A new pathway to H-deficiency

Mark Walker (Manly Astrophysics)

Conventionally:

- HDEF explained in terms of stellar evolution
- Get rid of H by burning it

This talk:

- Bigger Barbon HDEF explained by reference to circumstellar clouds
 - Cold, dense, self-gravitating, molecular gas
- Get rid of H by condensing gaseous H₂ into snowflakes
 <u>Outline:</u>
- Motivations for H₂ snow clouds & snowflakes
- Sketch of snow cloud properties
- Star-cloud interactions
- Interpretation of two HDEF phenomena

Snow Clouds

- Cold, dense molecular gas is very hard to detect.
 Maybe a lot of mass in this form (Pfenniger & Combes 1994)
- Radio scintillation data suggest lots of unseen circumstellar gas clouds (MW et al 2017)

Snowflakes

- Charged snowflakes are durable in diffuse ISM (MW 2013)
- \sim Ionisation chemistry differs from gas phase H_{2}
 - "New" molecule : H_6^+ (Lin, Gilbert & MW 2011)

Hydrostatic models of H₂ snow clouds

Assumptions: Spherical Self-gravitating Fully convective 75% H₂, 25% He No Metals Minimal snow content

Key Characteristics: Low masses Low densities Low luminosities

High density, robust structures

Example with $M = 10^{-4} M_{\odot}$

Manly Astrophysics

Convection transports heat inwards

Buoyant instability, but entropy increases outwards

Manly Astrophysics

Star-cloud interactions: 1. Radiation

- Radiation pressure strips snowflakes from cloud
 - Cloud gradually becomes H-deficient
- Radiation absorbed inside the cloud
 - Heat input causes expansion and cooling
 - More snowflakes produced (and stripped)
- Hot stars more effective at heating
 - Far-UV component absorbed by snowflakes

Dust tail

Star-cloud interactions: 2. Collisions

- Strong shocks. High temperatures. Destruction of cloud. Luminous transient. Emission lines.
- Dwarfs: no significant penetration of star by cloud
 - Stellar surface enriched in both H and He
- Giants: cloud core might penetrate stellar envelope
 - Stellar surface enriched in He

Star-cloud interactions: 3. Tides

Circular orbits:

- Roche lobe overflow
 - Heat input by star drives expansion of cloud
- Disk accretion onto star
 - Some accretion power
- Disk is pure He
 - Stellar surface becomes H-deficient

Highly eccentric orbits:

- Tidal disruption of cloud
 - Adiabatic expansion. Most H₂ turns to snow
 - Spray of He & snowflakes
- Snowflakes driven out by radiation pressure
- Half of He may fall back
 - Stellar Surface becomes H-deficient

Tidal disruption of clouds: R Cor Bor stars?

Figure borrowed from talk by James Guillochon (tidal disruption of a star by a black hole)

Unbound

Manly Astrophysics

reinin rail of the

Circular orbit around hot star: Wolf-Rayets?

• $E > 24 \text{ eV} : \text{He} \rightarrow \text{He}^+$ • He emission lines • $E > 10 \text{ eV} : \text{H}_2 \rightarrow \text{H}_2^*$ • Absorbed by snow

He line emission

WR104: Tuthill⁺⁺ 2008

Dust tail

Summary

- Snow clouds are a new class of astronomical object
 - They have HDEF surfaces, because of H_{2} precipitation
- Circumstellar snow clouds can yield HDEF stellar surfaces
 - By Roche Lobe overflow onto star
 - By tidal disruption of clouds, and fall-back of Helium
- Snow clouds might provide alternative explanations for HDEF systems where there is dust production
 - Wolf-Rayet phenomenon
 - R Cor Bor phenomenon