From snowflakes to planets

Mark Walker (Manly Astrophysics)

Why consider solid H_2 ? : #1

- ISM dust models constrained by abundances
 - \odot Need grain size distribution cutoff at ~ 0.3 μm
 - Still use 100% of Si, Mg, Fe, and 50% of C
- But large ISM grains found in Solar System
 - Ulysses & Galileo impact detectors
 (Grun et al 1993, Landgraf et al 2000)
 - Radar detection of micrometeors Arecibo (Meisel et al 2002) AMOR (Baggaley+)
 - 50× more mass than available in metals

Why consider solid H_2 ? : #2

Solid H₂ suggested in 1960's (Wickramasinghe+)

- Based on erroneous P_{sat}
- Pure solid H₂ too volatile to survive in ISM (Field, and Greenberg & de Jong)
- But thermodynamics of <u>pure</u> solid is misleading
 - Surface ionisation from ambient UV
 - Cations remain in solid, e- bound in vacuum

 H_2

- Large electric fields at surface
- Sublimation energy of $H_2 \sim quadrupled$
- Cold grains can survive indefinitely

Phase equilibrium : effect of charging

Why consider solid H_2 ? : #3

- Mid-IR spectra support conventional model :
 - 9.6 µm absorption : astronomical silicate
 - Various emission lines : PAH's
- But features are broad : hard to identify securely
- Pure solid H₂ has feeble mid-IR transitions
- Solution Dominant bands from cations: H_6^+ and $(HD)_3^+$
 - Solution Recently discovered; only form in solid H_{2}
 - No IR lab spectroscopy
 - Calculated transitions match ISM bands

IR Absorption

IR Emission

Star & planet formation with solid H₂

- Need cold, dense gas to make H₂ snow
- Self-gravitating clouds with
 - Radius ~ AU
 - \odot Mass ~ M $_{\oplus}$ (?)
- Start with clusters of, e.g., $\sim 10^7$ snowclouds
- Collisions : merging & disruption of snowclouds
 - Solution Disruption causes precipitation of H_2
 - \bigcirc Central agglomerate \rightarrow Star
 - \bigcirc Remaining debris \rightarrow Planets
 - Snowclouds at large radii remain intact

Intact snowclouds observed in death throes

Intact snowclouds observed in death throes

Possibilities for planet formation

- Protoplanetary disk mass could be dominated by solid H₂
- Solid H₂ has a low density $(0.087 \text{ g cm}^{-3})$
 - Snowballs would have much lower density
 - Could have rapid growth:
 - Snowflakes \rightarrow snowballs \rightarrow "gas" giants
- Silicates etc. already aggregated into lumps at centres of pre-disruption snowclouds
 - Prefabricated metallic objects:
 - Asteroids, comets (moons? dwarf planets?)
 - Gravitational nucleation sites

Summary

- Solid Harding Interstellar dust could be mainly solid H_{a}
 - Large ISM grains observed in solar system
 - Charging makes solid H₂ durable
 - H_6^+ and $(HD)_3^+$ vibrational spectra match ISM
- Need cold, dense gas-clouds to make H₂ snow
 - Dark snowclouds: radii ~ AU, masses ~ $M_{\oplus}(?)$
- Clusters of snowclouds evolve to yield stars and protoplanetary disks
 - Prefabricated metallic lumps + H₂ snowflakes
 - Rapid growth of planets