Solid H_2 : Interstellar Dust

Mark Walker (Manly Astrophysics)

Extreme Scattering Events

- Radio-wave lensing
- Ionised gas clouds
- Size ~ 1 AU
- Pressure ~ $10^3 P_{ism}$
- \sim numbers ~ 10⁴ pc⁻³
- Light-curve symmetry
- Solution Implies lens symmetry -600 -400 -200 0
- Axisymmetric lens .: spherical
 - ... underlying self-gravitating neutral cloud
 - Planetary mass

Time (days)

200

400

600

Are tiny gas clouds a fiction?

Not in the Helix Nebula (O'Dell & Handron 1996)

Not in the Galactic Centre (Gillessen et al 2012)

Clouds must be cooled by $H_{\mathbb{R}}$ snow \therefore $H_{\mathbb{R}}$ snowflakes injected into ISM

Stripping

Clouds must be cooled by $H_{\mathbb{X}}$ snow \therefore $H_{\mathbb{X}}$ snowflakes injected into ISM

Stripping

Disruptive Heating Event (e.g. nearby SN)

Charging of dust grains

 γ : Photoelectric

 γ : Photoelectric

e

 p^+

Collisional

 SiO_2

╋

 H_2

Electronic band structure

Surface layers of H₂ crystal

 \bigcap

 $U_{pol} = -\alpha E^2 / 2$ ~ - 980 K

E-field

Charged-grain H₂ phase equilibrium

 $\begin{array}{lll} H_{2} \mbox{ ionisation chemistry} \\ Gas phase: & H_{2}^{+} + & H_{2} \rightarrow & H_{3}^{+} + & H \\ Solid phase: & H_{2}^{+} + & 2 & H_{2} \rightarrow & H_{6}^{+} \\ ESR: & Miyazaki, Kumada, Kumagai ... \\ Theory: Symons, Woolley, Kurosaki & Takayanagi \end{array}$

"New" molecule No lab spectroscopy yet

Ab initio model H_6^+ and $(HD)_3^+$ isotopomers Characterised 5 vibrational modes (Lin, Gilbert & MW 2011)

Dust features in absorption

Boogert et al 2000

 H_6^+

Electromagnetic properties of H₂ grains

Contributions from: 1. Solid H₂ (modelled) FUV resonances (Lyman, Werner etc) Bound-Free transitions

2. Sub-surface ions - e.g. $(HD)_3^+$

 3. Vacuum electrons (modelling in progress) Confer metallic character
FIR resonance from in-plane d.o.f.
High-freq. inter-band absorption

Solid H₂ refractive index

First attempt at extinction curve model

Dust-grain mass spectra

Galileo's Orbit

Dust-grain mass spectra

Summary

Fiedler events point to a large, Galactic population of tiny molecular gas clouds Cooling via solid H₂ confers thermal stability 9 Hydrogen snowflakes injected into ISM Collisions & SNe effective at high-z Sublimation inhibited by charged surface Solid H₂ can survive in the diffuse ISM Striking coincidences between ISM bands and vibrational modes of H_6^+ & $(HD)_3^+$ Potential to reconcile observed extinction curve with in-situ detections of ISD-grains No abundance problems