Interstellar scintillation : turbulence under the microscope

Mark Walker (Manly Astrophysics)

Physics of scintillation

Ionised gas

Armstrong, Rickett & Spangler 1995

An Intra-Hour Variable Quasar

8

10

(hr)

12

PKS0405-385 : Kedziora-Chudczer & Jauncey

6

Manly Astrophysics

 $\mathbf{0}$

2

1.8

1.6

1.4

1.2

Properties of scattering structures

D ~ few pc : For Intra-Hour Variable quasars

- More distant for Intra-Day Variable quasars
- Seen to kpc distances with pulsars ("Parabolic Arcs" : Stinebring et al)
- Size ~ $10^{14\pm1}$ cm (e.g. PKS 0405)
 - Episodic variability : MASIV (Lovell et al)
- \odot P_{gas} ~ 10⁵ K cm⁻³ \gg P_{ISM}
- Solution Number density $\sim 10^4 \text{ pc}^{-3}$
- \bigcirc Anisotropy of scattered images, A \gg 1

A ≥ 10 from pulsar dynamic spectra (Cordes et al 2006)

A > 30 from pulsar dynamic spectra (Brisken et al 2011)

A ≥ 100 from the kinematics of J1819+3845

A ≥ 100 from the kinematics of J1819+3845

Nature of scattering structures

A ~ 10

A ~ 10

A ~ 100

Is this part of a cascade from large scales ?
Highly stressed : P_{ISM} « P_{gas} « P_B
Highly concentrated
Highly ordered

Key Points

Interstellar scattering is highly localised • Concentrations ~ $10^{14\pm1}$ cm in size Solution Number density in Galactic disk $\sim 10^4$ pc⁻³ Solume filling factor $\sim 10^{-8}$ Large stresses (gas, magnetic) Highly concentrated, stressed, ordered Unlikely to arise amid a turbulent cascade But scattering clouds may inject energy Whence a cascade to larger and smaller scales ?