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ABSTRACT

Cyclic spectroscopy is a signal processing technique that was originally developed for engineering applications
and has recently been introduced into the field of pulsar astronomy. It is a powerful technique with many attractive
features, not least of which is the explicit rendering of information about the relative phases in any filtering imposed
on the signal, thus making holography a more straightforward proposition. Here we present methods for determining
optimum estimates of both the filter itself and the statistics of the unfiltered signal, starting from a measured cyclic
spectrum. In the context of radio pulsars these quantities tell us the impulse response of the interstellar medium
(ISM) and the intrinsic pulse profile. We demonstrate our techniques by application to 428 MHz Arecibo data on
the millisecond pulsar B1937+21, obtaining the pulse profile free from the effects of interstellar scattering. As
expected, the intrinsic profile exhibits main- and inter-pulse components that are narrower than they appear in the
scattered profile; it also manifests some weak, but sharp, features that are revealed for the first time at low frequency.
We determine the structure of the received electric field envelope as a function of delay and Doppler shift. Our
delay Doppler image has a high dynamic range and displays some pronounced, low-level power concentrations at
large delays. These concentrations imply strong clumpiness in the ionized ISM, on AU-size scales, which must
adversely affect the timing of B1937+21.
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scattering
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1. INTRODUCTION

Although radio pulsars emit intrinsically broadband radia-
tion, spectroscopy of these sources often reveals a great deal
of narrowband structure (e.g., Rickett 1990). This structure
arises during propagation of the signal through the interstel-
lar medium (ISM), where it is scattered by inhomogeneities in
the ionized gas—it is interference between the various scattered
waves which creates the observed fringes. Consequently, high
resolution spectroscopy of pulsars has proved to be a powerful
tool for investigating the ISM (Roberts & Ables 1982; Cordes
& Wolszczan 1986; Stinebring et al. 2001).

Traditionally pulsar spectroscopy is undertaken by forming
the power spectrum of the signal in a pulse-phase window where
the flux is high (i.e., “on-pulse”), and subtracting the power
spectrum from a window where the flux is low (“off-pulse”),
so as to remove the steady, background power level. Recently,
Demorest (2011) has drawn attention to an alternative approach,
known as cyclic spectroscopy, in which one measures the
modulation of the spectrum across the entire pulse profile.
Cyclic spectroscopy was developed in engineering disciplines
for studying signals whose statistics are periodically modulated
(Gardner 1987; Antoni 2007). Signals of this type are common
and are referred to as cyclo-stationary. The electric field received
from a radio pulsar can be thought of as periodically amplitude-
modulated noise (Rickett 1975), so radio pulsars provide an
example of a signal which is cyclo-stationary.

As described by Demorest (2011), cyclic spectroscopy has
several advantages over the simpler method of differencing on-
pulse and off-pulse power spectra. Periodic amplitude modula-
tion of the pulsar’s radio frequency noise, introduced by rotation
of the pulsar beam, splits the received signal into upper side-

band and lower sideband. By construction, the cyclic spectrum
is the product of the lower sideband with the complex conju-
gate of the upper sideband. It is thus a complex quantity and
as such it explicitly manifests information about the phase of
any filtering which has occurred prior to reception. For radio
pulsars observed at low frequencies, the dominant filtering is
due to the ISM, specifically to dispersion and scattering of the
waves. Thus, a time-domain representation of the filter is, to a
good approximation, just the impulse response of the ISM.

In the present paper we show how to determine the filter given
a measured cyclic spectrum. We also show how to determine
the intrinsic cyclic spectrum of the signal—in other words, the
(Fourier transform of the) pulse profile which would have been
observed in the absence of any scattering or dispersion. These
determinations are both made in the narrowband approximation,
appropriate to our data, where there is assumed to be no variation
of the intrinsic cyclic spectrum across the observed radio
frequency band. Our main dataset is a 4 MHz bandwidth voltage
recording, centered on 428 MHz, of the original millisecond
pulsar, B1937+21 (Backer et al. 1982), made with the Arecibo
radio telescope.4

As far as we are aware, the methods presented in this paper
are the first attempts to determine both the filter and the intrinsic
cyclic spectrum for any astronomical signal. It is possible
that our techniques may be useful in fields other than pulsar
astronomy, but we do not attempt to identify appropriate fields.
Rather, we encourage readers to consider applications in other
contexts. To aid that process, we note here the requirements

4 The Arecibo Observatory is operated by SRI International under a
cooperative agreement with the National Science Foundation (AST-1100968),
and in alliance with Ana G. Méndez-Universidad Metropolitana, and the
Universities Space Research Association.
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for the validity of our approach: first, the signal must be cyclo-
stationary—i.e., stationary at each phase in its cycle—in order
for the cyclic spectrum to be well defined. Second, our least-
squares fitting assumes that the intrinsic cyclic spectrum is
just white noise that is periodically amplitude-modulated, so
non-pulsar applications of our techniques are limited to signals
which can be described in this or a similar fashion. Finally, the
filter must not change significantly within the averaging time
over which each cyclic spectrum is constructed. In addition to
these requirements, the stopping criterion we employ for our
optimizations is based on the assumption of Gaussian noise, but
it would be straightforward to modify that criterion. We note
that source code is freely available for all the software used
herein (see Section 5), so readers are free to adapt our code to
their purpose.

This paper is organized as follows. In the next section we
give some background to the particular problems tackled in this
paper. Then in Section 3 we show how to determine the filter
function and the intrinsic cyclic spectrum by direct construction.
In Section 4 we consider the issue of optimization—i.e.,
obtaining representations of these quantities which best fit the
measured cyclic spectrum. In doing so we see that our direct
estimate of the intrinsic profile, given in Section 3, is in fact
the optimum estimate in a least-squares sense. Section 4 does,
however, highlight deficiencies in our direct approach to the
filter function, so for this quantity we utilize a large-scale
optimization of the filter coefficients. Our implementation of
this optimization is coded in the language “C” and is freely
available; it is described in Section 5. In Section 6 we present
results obtained by applying our methods to low-frequency data
on PSR B1937+21; both filter functions and intrinsic pulse
profiles are presented. Discussion (Section 7) and conclusions
(Section 8) round out the paper. Appendices A and B detail (1)
the results of the various tests we used to evaluate the code, and
(2) an analysis of the uncertainties in best-fit parameters.

2. BACKGROUND AND GENERAL CONSIDERATIONS

Procedures for constructing the cyclic spectrum itself, from
a set of recorded voltages, are given by Demorest (2011). We
begin our development by quoting the relationship between a
signal, x(t), a function of time, with Fourier transform X(ν), and
the cyclic spectrum of that signal, Sx. At modulation frequency
α we have (Gardner 1987; Antoni 2007; Demorest 2011)

Sx(α, ν) ≡ 〈X(ν + α/2) X∗(ν − α/2)〉, (1)

where the time-average is taken over integer multiples of the
period of the system. Thus, if we apply a filter, H (ν), such that
the filtered signal is Z(ν) = H (ν) X(ν), then the cyclic spectrum
of the filtered signal is

Sz(α, ν) = H (ν + α/2) H ∗(ν − α/2) Sx(α, ν). (2)

In the case of a radio pulsar, the signals X,Z are just electric
fields, and the frequency ν is the radio frequency. Filtering of
the signal occurs as a result of propagation, notably dispersion
and scattering in the ionized ISM, and in the process of
reception, e.g., the bandpass filter. The filter resulting from
interstellar propagation evolves on some timescale, and the
average in Equation (1) must be restricted to times which are
short compared to that evolution timescale.

Throughout this paper we confine attention to the case
of small fractional radio bandwidths, for which we expect

the intrinsic cyclic spectrum to be approximately independent
of ν:

Sx(α, ν) → Sx(α). (3)

The quantity Sx(α) is already familiar to astronomers from
conventional analysis of radio pulsar signals. It is just the Fourier
transform of the pulse profile, but we emphasize that it is the
transform of the intrinsic pulse profile, rather than the transform
of the measured pulse profile—the difference being that the
latter includes the influence of scattering and other contributions
to the filter H.

In general, both Sz and Sx are complex quantities, but in the
particular case α = 0 we obtain the zero-modulation-frequency
components of the filtered and unfiltered signals, respectively.
As these are just the time-averaged power spectra of the signals,
they are non-negative real numbers.

2.1. Degeneracies

Before extracting estimates from our data, it is necessary to
identify and eliminate any degeneracies in the model. Equa-
tion (2) shows that there are degeneracies which are multiplica-
tive in form. Writing

H (ν) → H (ν) Q(ν), (4)

we see that Sz → Sz if and only if

Sx(α, ν) → Sx(α, ν)

Q(ν + α/2)Q∗(ν − α/2)
. (5)

Thus if Sx and H are completely unconstrained then there may
be a great deal of degeneracy between these quantities in our
model of Sz: features seen in the data might be attributed to the
intrinsic spectrum or to the effects of an imposed filter.

In circumstances where the intrinsic cyclic spectrum is
independent of radio frequency (Equation (3)), the scope
of the degeneracy is limited to functions Q(ν) such that
Q(ν + α/2)Q∗(ν − α/2) is independent of ν. This condition
should hold for all α. In the case of small α, by expanding to
first order in α, we see that the form of Q is restricted to those
functions satisfying

|Q(ν)| = const., (6)

and
d

dν
Im{log Q(ν)} = const. (7)

Hence if we do not know the actual form of Sx(α), then the filter
function can only be determined up to an arbitrary multiplicative
factor of

Q(ν) = exp[i(τν + φ) + ρ], (8)

where τ , φ, and ρ are real constants. In other words, the overall
normalization of H, its phase, and its phase gradient are all
arbitrary because the simultaneous transformation

Sx(α) → Sx(α) exp[−iτα − 2ρ], (9)

leaves Sz unchanged.
If, however, Sx(α) is already known from previous observa-

tions, then the only remaining degeneracy is the overall phase
of H. This phase is always arbitrary, as seen by noting that φ
does not appear in Equation (9).
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2.2. Sampling

For a periodic modulation with period P = 1/Ω, as is the case
with signals from a radio pulsar, the cyclic spectrum is expected
to be zero everywhere except at α = mΩ, where m is an integer,
so those are the only modulation frequencies which we sample.
In practice, the data are also sampled discretely in the radio-
frequency dimension, so we have measurements on a grid, with
spacing Δα = Ω, and Δν which we are at liberty to choose. In
choosing Δν the primary consideration relates to structure in the
filter function: if we wish to capture signal components which
are delayed by times up to τ , then we need to have a resolution
Δν � 1/2τ . One could choose the resolution to be �1/2τ but
that would entail a greater computational load in constructing
the cyclic spectrum.

There is a natural limit to the fineness of the spectral resolution
set by Δν = Δα = Ω, corresponding to delays τ = ±P/2,
where P is the pulse period. If there are signal components at
delays greater than half the pulse period then the cyclic spectrum
is intrinsically under-sampled in α, because the modulation
imposed by the filter function changes significantly on scales
δα < Ω.

On the other hand, there is no difficulty in setting Δν 	 Ω,
providing that there are no significant signal components at
delays greater than 1/Δν.

Although the cyclic spectrum is normally computed on a
rectangular grid, values at large |α| and |ν| may not contain
any information. If the voltage signal has a bandwidth B,
sampled at the Nyquist rate, then the resulting cyclic spectrum
is only valid within a diamond-shaped region around the origin,
with |α/2| + |ν| < B/2 (Demorest 2011). We also note that
there cannot be more information in the cyclic spectrum than
was present in the sampled voltage signal from which it was
derived. Thus, if the cyclic spectrum includes pulse harmonic
numbers m > Np (the number of pulses averaged over), then the
pixels in the cyclic spectrum may not statistically be completely
independent. Because of these limitations, the actual number of
constraints provided by the data may be smaller than the number
of grid points in the cyclic spectrum.

2.3. Noise and Bias

The computed cyclic spectrum includes measurement noise
which we can characterize in the following way. Suppose that
the recorded voltage is Z(ν)+N (ν), then we expect the measured
cyclic spectrum to be

〈D(α, ν)〉 = Sz(α, ν) + 〈|N (ν)|2〉 δ(α), (10)

where the delta function appears because the measurement noise
is stationary. Thus, our measured cyclic spectrum is free of noise
bias except at α = 0.

Because modulation is the fundamental characteristic of
pulsar radiation which allows it to be distinguished from
measurement noise, estimating the unmodulated part of the
cyclic spectrum, Sz(0, ν), from D(0, ν) is ambiguous. In this
paper we therefore make no attempt to quantify Sz(0, ν), nor
do we make direct use of D(0, ν) in our estimates of the signal
properties Sx(α) and H (ν). In turn this means that we are giving
up any possibility of determining Sx(0), the zero-frequency
term in the Fourier representation of the intrinsic pulse profile.
We therefore adopt the convention Sx(0) = 0 in our models
throughout the rest of this paper.

The actual data which we record, D(α, ν), will differ from
〈D〉 because of measurement noise and because the signal itself

is stochastic in nature. If there is no averaging (see the discussion
following Equation (14)), the variance of the measured cyclic
spectrum is given by (Antoni 2007)

var{D(α, ν)} = 〈D(0, ν − α/2)〉 〈D(0, ν + α/2)〉. (11)

At zero modulation frequency, we recover from Equation (11)
the familiar result for stationary signals that the variance of the
unaveraged power is just the square of the mean power.

For observations of radio pulsars with current instrumenta-
tion, noise power is usually the dominant contribution to D(0, ν)
and in this case we have

var{D(α, ν)} 
 〈|N (ν − α/2)|2〉 〈|N (ν + α/2)|2〉. (12)

If the measurement noise is white, as is often the case in practice,
then Equation (12) yields a uniform variance,

var{D} = 〈|N (ν)|2〉2 = σ 2, (13)

over the entire cyclic spectrum. It is straightforward to estimate
σ , because at zero modulation frequency the cyclic spectrum is
just a power spectrum. Thus the noise level is just

σ = Ssys√
Δt Δν

, (14)

where Ssys is the system-equivalent flux density, Δt is the
integration time, and Δν is the channel width. (Here we only
consider a single polarization state, but clearly the results can
be generalized to different combinations of polarization states.)

Equation (14) clarifies what is meant by the “no averaging”
requirement immediately preceding Equation (11). For cyclic
spectroscopy of pulsars the natural choice of spectral resolution
is Δν = Δα, and we always have Δα = 1/P , where P is the
pulse period. Thus, for Δt = P we have a time-bandwidth
product of unity—a single sample of the signal—and σ = Ssys.
Equation (11) is then appropriate to a single pulse, and if the
cyclic spectrum is averaged over Np pulses, the variance is
smaller by a factor 1/Np.

3. DIRECT CONSTRUCTION OF FILTER AND PROFILE

We now turn to the task of estimating the filter function (ISM
impulse response) and the intrinsic (unscattered) pulse profile
starting from a measured cyclic spectrum. We can approach both
of these tasks by iteration, as we now describe.

3.1. Determining the Filter Function

Suppose we have a model for Sx, but we have incomplete
knowledge of H. If we know the value of H at a single frequency,
ν1, we can determine its value at nearby frequencies using the
measured cyclic spectrum in the vicinity of ν1, thus:

H (ν1 + α) 
 D(α, ν1 + α/2)

H ∗(ν1) Sx(α)
. (15)

We can make a better estimate of H at a given frequency if
we know several nearby values of H. Making the replacement
ν → ν − α/2 in Equation (2), multiplying by H (ν − α) S∗

x (α)
and summing yields

H (ν) =

∑
α �=0

D(α, ν − α/2) H (ν − α) S∗
x (α)

∑
α �=0

|H (ν − α)|2 |Sx(α)|2 , (16)

3
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where we have used the data, D, as our estimate of Sz.
This equation allows us to construct H, in regions where it
is unknown, from nearby regions where it has already been
determined, providing that we have formed an estimate of Sx.
We note that Equation (16) includes Equation (15) as a special
case where H is known only at a single frequency.

Although the development in this section has focused on the
idea of obtaining an estimate of H at frequencies where it is
not known, it is clear that one could employ Equation (16) even
if we already have an estimate of H (ν) for all frequencies, so
it can also be viewed as a procedure for updating an existing
model of H. We will return to this idea in Sections 3.3 and 4.

3.2. Determining the Intrinsic Spectrum

Now suppose that we have a model for H, what then
do the data tell us about Sx? Multiplying Equation (2) by
H ∗(ν + α/2) H (ν − α/2) and summing over ν gives

Sx(α) =
∑
ν

D(α, ν) H (ν − α/2)H ∗(ν + α/2)∑
ν

|H (ν − α/2)|2 |H (ν + α/2)|2 , (17)

where, again, we have used the data, D, as our estimate for
Sz. Thus, given data and a model for the filter function, we
can obtain an estimate of the intrinsic pulse profile implied by
the observed cyclic spectrum. Note that this formula implies a
unique estimate of Sx associated with any given pair D,H . We
shall see in Section 4 that Equation (17) is actually the optimum
estimate of Sx, in a least-squares sense, given the data D and the
filter H.

3.3. Bootstrap

From the foregoing we can see that it is straightforward to
form an estimate of H given Sx, and vice versa. However, we
might not initially know either. In this situation it is natural to
proceed iteratively, starting with crude estimates and then using
Equations (16) and (17) repeatedly to improve those estimates.
One way of starting the process is to initialize the intrinsic cyclic
spectrum to Sx(α) ← 〈D(α, ν)〉ν , i.e., the observed (scattered)
pulse profile. This corresponds to the model H (ν) = 1 and we
could commence iteration of Equations (16) and (17) using this
approximation.

Alternatively, having specified our initial estimate of Sx we
can build up our estimate of H gradually, using Equation (16),
starting from an estimate of its value at a single frequency,
H (ν1). Because the overall phase of H is arbitrary (Section 2.1)
we are free to choose the phase of H (ν1), e.g., phase zero, so
only |H (ν1)| need be specified in order to start the iteration. One
possible initialization is thus H (ν1) ← √|D(Ω, ν1)/Sx(Ω)|, and
from there we can gradually build H over the full range of radio
frequencies, with information flowing outward from ν1 toward
the edges of the band. In this approach, one simply initializes H
to zero for frequencies where no estimate has previously been
made, so that those frequencies make no contribution to the
estimator in Equation (16).

Once this is done we can improve our estimate of the intrinsic
cyclic spectrum, Sx, by application of Equation (17), then we
can get a better estimate of H by applying Equation (16), and
these iterations can be repeated. Thus, if we know neither Sx nor
H, we can build bootstrap estimates for both of these quantities,
given a measured cyclic spectrum.

The procedure just described is the method which we initially
used to solve for H and Sx, from the first measured cyclic spectra

of a radio pulsar (i.e., the data used in Section 5). Broadly
speaking, the method works. We found that it provided a good
representation of much of the structure in the cyclic spectra,
and the intrinsic profile was significantly narrower than the
scattered profile (see Figure 3 in Demorest 2011). However,
it also exhibited some deficiencies, as we describe below.

3.4. Deficiencies of the Direct Method

One problem we anticipated is the difficulty of constructing
H in regions where |H | is small. In these regions the solution for
H is sensitive to noise in the data. In particular, it is susceptible
to phase jumps at points where |H | → 0: the solutions on
either side of the zero can be mutually inconsistent. There are
two reasons why this problem arises. One is fundamental: a
zero in |H | is an absence of phase information at that particular
point, and this cannot be overcome by using different methods
of solution. The other reason is specific to the solution method
we have presented: the summation in Equation (16) includes
information coming from both sides of the zero, so each side
tries to rotate the phases of the other in order to bring about
consistency, but neither side succeeds. In other words, phase
discontinuities at zeros of |H | constitute traps for this method of
solution. It is not necessary for |H | to be precisely zero in order
for a trap to form; it suffices for the signal-to-noise ratio to be
low (�1 on a per-channel basis). Trapping was indeed observed
in the results we obtained using the approach described above,
with significant residuals commonly occurring in the vicinity of
points where |H | is small.

It is clearly possible to modify the solution method so as
to be less susceptible to these traps. Most obviously, one can
restrict the summations in Equation (16) to values of α with
a single sign—so that we are only using the information from
frequencies > ν (or < ν) in our estimate for H (ν). In this
scheme information flows in only one direction across the zeros,
so one side dictates phase to the other. In practice we observed
that this modification did decrease the prevalence of trapping.
However, in using only one sign of α we are ignoring half of
the information available to constrain H at any given value of ν,
so the resulting solution for H cannot be optimum. In the next
section we present methods for obtaining the best-fit solutions
for H and Sx.

4. OPTIMUM ESTIMATES OF FILTER AND PROFILE

In estimating H and Sx what we really want are the models
which best fit the data, so we have an optimization problem. We
introduce the residual between model and data:

R(α, ν) ≡ Sz(α, ν) − D(α, ν), (18)

and we seek to minimize the magnitude of these residuals.
Suppose our data, D, have Nν radio frequency channels, and

Nα modulation frequency bins. In this case we are modeling
a filter with Nν complex unknowns, and an intrinsic cyclic
spectrum with Nα/2 complex unknowns. (The pulse profile
is a real quantity, so the spectrum at negative modulation
frequencies is simply the complex conjugate of that at positive
frequencies.) Thus, there are Nν + Nα/2 complex unknowns and
∼ Nν × Nα/2 complex constraints provided by the data, so for
Nν,Nα 	 1 the model is over-determined. In this situation we
cannot make the residuals zero everywhere and we simply aim
to make them small.

4
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Here we follow the usual practice of minimizing the sum-of-
squares of the residuals

M ≡
∑

ν,α �=0

R∗ R, (19)

with respect to all of the model parameters. We then have

∂M

∂q
= 2

∑
ν,α �=0

R
∂S∗

z

∂q
, (20)

where q represents any of the model parameters which define H
and Sx, and minimization of M implies

∂M

∂q
= 0 (21)

for every parameter q.
We compute the derivative for each parameter in turn. Each

value of H and Sx is complex and thus involves two distinct real
parameters. We take these to be the real and imaginary parts of
the coefficients. For Srm := Re{Sx(αm)}, Sim := Im{Sx(αm)},
we have

∂M

∂Srm

+ i
∂M

∂Sim

= ∇SM|α=αm
, (22)

where

∇SM := 4
∑

ν

R(α, ν) H (ν − α/2) H ∗(ν + α/2). (23)

For Hrk := Re{H (νk)}, Hik := Im{H (νk)}, we have

∂M

∂Hrk

+ i
∂M

∂Hik

= ∇HM|ν=νk
, (24)

where

∇HM := 4
∑
α �=0

R(α, ν − α/2) H (ν − α) S∗
x (α). (25)

Having determined a demerit function, M, and the gradient
of M with respect to each of the parameters of interest, we
are in a position to employ one of various standard methods
(e.g., Nocedal & Wright 1999) to the problem of optimizing
our solutions. Before turning to the choice of method, and the
details of its application, it is helpful to establish the relationship
between our “direct” solutions of Section 3 and the optimum
estimates which we are seeking.

4.1. Relationship of Direct Solution to Least-squares

We have already noted (Section 3) that our “direct” procedure
for constructing H—i.e., Equation (16)—could also be regarded
as an algorithm for updating H, given an existing estimate.
Explicitly, the update is H → H + ΔH , where

ΔH (ν) := −

∑
α �=0

R(α, ν − α/2) H (ν − α) S∗
x (α)

∑
α �=0

|H (ν − α)|2 |Sx(α)|2 . (26)

We can also rewrite Equation (17) as an update for the intrinsic
spectrum, Sx → Sx + ΔSx , with

ΔSx(α) := −
∑
ν

R(α, ν) H (ν − α/2)H ∗(ν + α/2)∑
ν

|H (ν − α/2)|2 |H (ν + α/2)|2 . (27)

In both cases we recognize the numerator to be (up to a constant
factor) just the gradient of −M with respect to the corresponding
parameters. This is comforting because it suggests that our
“direct” method is moving the estimates in a direction which
will improve the model. To be confident that this is the case, we
need to gauge the step size, not just its direction, and to achieve
that it is helpful to evaluate the second derivatives of M.

The curvature of M with respect to our various parameters is
given by differentiating Equations (23) and (25). The results are

∂2M

∂S2
rm

= 4
∑

ν

|H (ν + αm/2)|2 |H (ν − αm/2)|2,

= ∂2M

∂S2
im

, (28)

and

∂2M

∂H 2
rk

= 4
∑
α �=0

|H (νk − α)|2 |Sx(α)|2,

= ∂2M

∂H 2
ik

. (29)

We can now see that for each of our real parameters, q, the
“direct” estimate in Section 3 is an iteration with updates
(Equations (26) and (27)) Δq:

Δq = −
[
∂2M

∂q2

]−1
∂M

∂q
. (30)

This form is just Newton’s method applied to each parameter
separately. Equivalently, it is a simultaneous, multi-parameter,
quasi-Newton method in which the off-diagonal elements of the
Hessian are neglected.

We can check whether or not this is a good approximation
to the actual Hessian by explicitly computing the off-diagonal
terms. In the case where both qi and qj relate to Sx these
off-diagonal elements are all zero. Furthermore, because the
diagonal terms (Equation (28)) are independent of Sx, all of
the higher derivatives of M with respect to Sx are zero—the
hypersurface of M is quadratic in Sx when H is fixed. This is no
surprise because the residual (Equation (18)) is linear in Sx, and
M is quadratic in the residual. It follows that Newton’s method
yields an exact solution for Sx in a single step. Thus, we see
that our direct estimate of Sx, given in Equation (17), is also the
least-squares solution appropriate to the filter H and the data D;
no additional optimization steps are necessary.

Unfortunately this is not true of the filter function, H: neither
the off-diagonal elements of the Hessian nor the higher order
derivatives are zero in this case. The fact that the off-diagonal
terms of the Hessian are non-zero means that we should not
expect the filter update (Equations (16) and (26)) to yield a
good model. We now turn to the problem of optimizing our
model filter function.

4.2. Optimization of the Filter

To optimize our model filter, we can employ one of the
established quasi-Newton methods, in which an approximate
(inverse-) Hessian is constructed at each iteration, based on
the local properties of the hypersurface M revealed in previous
iterations (see, e.g., Nocedal & Wright 1999). A popular choice

5



The Astrophysical Journal, 779:99 (19pp), 2013 December 20 Walker, Demorest, & van Straten

is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, and
that is the method we employ in Section 5 and subsequently.

By utilizing a BFGS update to our estimate of H (ν), we expect
to do significantly better than the update in Equation (16). This
is a general expectation, but it also applies to the particular
problems noted in Section 3.4: by including the non-zero off-
diagonal curvatures of M, we provide some of the information
needed for the algorithm to escape the traps introduced by zeros
in |H (ν)|. However, we ought to be able to do better still if we
do not actually seek to construct H in frequency space, where
the traps are localized, but in the Fourier space conjugate to
frequency, i.e., lag space.

We introduce the lag space description of the filter, h(τ ),
which is related to the frequency space description of the filter,
H (ν), by the usual Fourier relationships for discretely sampled
functions:

hj ≡ h(τj ) =
∑

k

Hk exp[2πiτj νk], (31)

and

Hk ≡ H (νk) = 1

Nν

∑
j

hj exp[−2πiτj νk]. (32)

To optimize our model filter in lag space we need to know the
gradient of M with respect to the lag space filter coefficients,
hrj := Re{h(τj )} and hij := Im{h(τj )}. Noting that {hj } and
{Hk} are different representations of the same information we
can write

∂M

∂hrj

=
∑

k

{
∂Hrk

∂hrj

∂M

∂Hrk

+
∂Hik

∂hrj

∂M

∂Hik

}
, (33)

and similarly for the derivative with respect to hij. In this way
we find

∂M

∂hrj

+ i
∂M

∂hij

= ∇hM
∣∣
τ=τj

, (34)

where

∇hM := 1

Nν

∑
ν

∇HM exp[2πiτν]. (35)

Similarly, one can show that

∇HM =
∑

τ

∇hM exp[−2πiτν]. (36)

So, as an alternative to computing the frequency space deriva-
tives and determining the lag space derivatives from them, we
can compute the lag space derivatives first and then determine
the frequency space derivatives. Formally, the two different
paths to either frequency space or lag space derivatives are
equivalent. In practice we computed the lag space derivatives as
our primary quantities, using

∇hM = 4

Nν

∑
ν,α �=0

R(α, ν) S∗
x (α)H (ν − α/2) exp[πiτj (2ν + α)],

(37)
and determined the frequency space derivatives, if required, us-
ing Equation (36). There appears to be no significant difference
in computation time between the two approaches.

4.3. Uncertainties in Best-fit Parameters

Suppose that we have obtained our best-fit model. The
question then arises, “how accurate is that model?” To address
this issue we need a description of the behavior of the demerit,
M, in the vicinity of the best fit.

At the best-fit point in parameter space, which we denote by
{qjo}, ∇SM = 0, and either ∇HM = 0 or ∇hM = 0. If M = Mo

at the best-fit point, then in the immediate neighborhood of this
point the variation of M can be approximated by

M 
 Mo +
∑
j,m

1

2

∂2M

∂qm∂qj

(qm − qmo)(qj − qjo). (38)

For Gaussian noise, the normalized demerit, M/σ 2, is dis-
tributed like χ2 with Ndof 
 (Nν − 1)(Nα − 2) degrees of free-
dom, and we expect Mo 
 Ndofσ

2. The fit becomes significantly
worse if we move away from the optimum point to any other
point such that M − Mo = σ 2 (Avni 1976), and this contour of
M delineates the range of uncertainties in our fit.

Uncertainties in the individual fit parameters can be readily
determined if the Hessian, ∂2M/∂qm∂qj , is diagonal so that the
parameters are all independent of each other. In this case the
standard deviation, δqj , is given by

(δqj )2 = 2σ 2

(
∂2M

∂q2
j

)−1

. (39)

If the Hessian is not diagonal, then the parameters are covariant
and it is a much more difficult task to describe the uncertainties
in the fit. Because we know how M depends on each of the
various parameters, we can evaluate the elements of the Hessian
explicitly. In doing so, we find that the Hessian is indeed
diagonal with respect to the set of parameters describing Sx,
so Equation (39) correctly describes the constraints which our
model places on those parameters. However, the Hessian is not
diagonal with respect to either {Hk} or {hj }. The standard errors
as given by Equation (39) are evaluated in an Appendix, while
in the next section we discuss parameter covariance.

4.3.1. Covariances of {hj }
Unfortunately, the curvatures given in Equation (B8) are not

the whole story when it comes to describing the uncertainties in
the impulse response function, because there are non-zero, off-
diagonal elements of the Hessian in respect to these parameters.
It is beyond the scope of this paper to give a detailed description
of the effect of these mixed curvature terms; here we only draw
attention to their significance, deferring a thorough treatment to
a later paper.

To illustrate the importance of the off-diagonal elements of
the Hessian, we employ the simplest filter model, H (ν) = 1.
In this case we find, by direct calculation, that in addition
to the leading diagonal (described by Equation (B8)), there
is a single reverse diagonal on which the curvatures are non-
zero. This reverse diagonal cuts the leading diagonal at τm =
τj = 0, and for |τm − τj | � w, the pulse-width, the mixed
curvatures are comparable in size to the diagonal elements. The
upshot of this is that the combination of complex coefficients
h(τj ) + h∗(−τj ) is tightly constrained, whereas the combination
h(τj ) −h∗(−τj ) is poorly constrained. The former combination
can be thought of as a pure amplitude modification of the filter
H (ν), whereas the latter is a pure phase modification. Also, the

6



The Astrophysical Journal, 779:99 (19pp), 2013 December 20 Walker, Demorest, & van Straten

fact that these particular combinations of parameters are well-
constrained/poorly constrained for |τm − τj | � w is directly
attributable to the (in)sensitivity of H (ν + α/2)H ∗(ν − α/2) to
these types of modification.

5. IMPLEMENTATION OF FILTER OPTIMIZATION

Having already established that the simple quasi-Newton
method of Section 3 works tolerably well for our optimization
problem, even though all the off-diagonal elements of the
Hessian are neglected, our next step is to implement a more
sophisticated quasi-Newton method, the BFGS algorithm, to
optimize our filter coefficients. More precisely, because of the
large number of parameters (∼104) needed to describe the
filter coefficients, we utilize a “limited memory” algorithm,
which we call L-BFGS, in which the full inverse-Hessian is
not constructed (Nocedal 1980; Liu & Nocedal 1989).

We employed the L-BFGS algorithm coded in the NLopt
library5 (Steven G. Johnson, “The NLopt nonlinear-
optimization package”). The NLopt package was chosen be-
cause it is free, portable and offers a wide variety of optimization
algorithms (see Appendix A). In addition, we utilized the FFTW
Fourier transform package6 from the same group (Frigo & John-
son 2005). Our code is written in C and is freely available.7 It
makes use of the PSRCHIVE library8 (Hotan et al. 2004; van
Straten et al. 2012) for file input and therefore can accept data
in a variety of formats, including the standard PSRFITS pulsar
data format (Hotan et al. 2004).

Perhaps the first point to make here is that we have chosen to
optimize the filter coefficients separately from the parameters
which describe our model of the intrinsic cyclic spectrum,
Sx(α). There are several reasons for this choice. The strongest
motivation is that it allows us to enforce a common timing
reference on all our filter solutions, by using the same intrinsic
cyclic spectrum throughout. A common timing reference is of
paramount importance for all astrophysical studies which rely
on pulse arrival-time measurements. Furthermore, by using a
common timing (pulse-phase) reference, we can obtain a high
signal-to-noise ratio measurement of the intrinsic spectrum by
averaging over all our data.

The degeneracies discussed in Section 2.1 provide further,
minor motivations for separate optimization of filter and in-
trinsic cyclic spectrum models, as these degeneracies must be
eliminated in order for any algorithm to identify the best-fit
solution. For the overall normalization and phase of the filter
that is fairly straightforward, but controlling the degeneracy in
phase-gradient is not so easy if both H and Sx are simultaneously
adjusted. By contrast, there is no degeneracy in phase-gradient
if Sx is fixed.

We noted in Section 2.1 that the overall phase of H is always
arbitrary, and this degeneracy must be eliminated before we can
determine the model filter which best fits the data. We remove
this freedom by forcing the imaginary part of h(τ ) (or H (ν)) to
be zero at the point where |h(τ )| (or |H (ν)|) attains its largest
value. Because this choice is arbitrary, once an optimized filter is
obtained, we are free to rotate its overall phase to any preferred
value. If we have a temporal sequence of filters (see Section 6.5),
the appropriate choice of phase for a given filter is the one which
yields the closest match between the current and the previous

5 http://ab-initio.mit.edu/nlopt
6 http://www.fftw.org
7 https://github.com/demorest/Cyclic-Modelling
8 http://psrchive.sourceforge.net

(or subsequent) filter, leaving only a single, arbitrary phase for
the whole temporal sequence.

5.1. Initialization

We make use of two different initializations, which we refer to
as “Unit” and “Proximate.” In the case of Unit initialization, we
begin with |H (ν)| = 1, for all radio frequencies, and a constant
phase gradient in H (ν), chosen to match the mean phases seen in
the data at α = Ω. For lag-space optimization this initialization
corresponds to a delta-function model for h(τ ). Naturally, Unit
initialization is only sensible if the overall normalization of our
model Sx(α) is consistent with that of the data, D(α, ν), and we
therefore also normalize Sx(α) appropriately.

Unit initialization is appropriate if we have no prior informa-
tion on the actual structure which is present in the filter function
at the time the cyclic spectrum was recorded. Usually there are
many cyclic spectra recorded during a single epoch of obser-
vation—e.g., in Section 6 we present data from three separate
epochs of observation, totaling several hundred cyclic spectra.
In such cases the averaging time for each spectrum is chosen to
be small enough that the changes in the filter function between
adjacent cyclic spectra are small. Consequently, if we have al-
ready optimized the filter appropriate to one cyclic spectrum,
then that model provides us with a good starting point for mod-
eling the next filter function: that scheme is what we refer to as
Proximate initialization.

5.2. Stopping Criterion

At what point should we stop the optimization? The NLopt
algorithms include various criteria which may be used to
recognize that the optimization is complete. Our aim is to find
the minimum of M, but we do not know the precise value of
that minimum ahead of time, so a natural choice of stopping
criterion is that M should change by less than a certain, small
fractional value during a single iteration of the algorithm. We can
determine what that fractional tolerance should be as follows.

In Section 2.3 we gave expressions for the variance of
D(α, ν). In particular we noted that var{D} = σ 2, a constant,
is usually a good approximation in practice. Furthermore, at
large modulation frequencies, α 	 Ω, the noise is usually much
larger than the signal we are interested in, so it is straightforward
to get an estimate of σ 2 directly from the data.

For Gaussian noise, which is appropriate to the thermal noise
component, we expect the best-fit value of M to conform to
a χ2 distribution, with Ndof 
 (Nν − 1)(Nα − 2) degrees of
freedom. In this case, the minimum demerit is expected to be
Mmin 
 Ndofσ

2, and σ 2 is a significant change in M (Avni 1976),
so it is appropriate to stop the optimization once the changes
in M are small compared to σ 2. This translates directly into
the requirement that fractional changes in M should be small
compared to 1/Ndof . Therefore, in this paper the usual stopping
criterion is that the fractional change in M should be less than
0.1/Ndof .

If the noise is not uniform—e.g., at the edges of the band,
where the instrumental response rolls off, or because of strong
radio-frequency interference (RFI)—one can determine the vari-
ance at each point in the cyclic spectrum using Equation (11).
In this case, the residuals (Equation (19)) should be normalized
by the variance at each point (α, ν) prior to summation. The
resulting figure of merit will then be distributed like χ2. It is
straightforward to measure the noise variation across the band,
as per Section 6.1 (see the top panel in Figure 1).
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Figure 1. Two estimates of the amplitude of the instrumental bandpass filter for
the ASP baseband recorder. The upper plot shows a traditional estimate for the
bandpass, formed from the square-root of the total power

√〈D(0, ν)〉, averaged
over the data taken on MJD53791. The lower plot shows the result of averaging
|H (ν)| over all three epochs of observation. The vertical, dashed lines in the
lower plot delimit the regions which we trimmed off, to eliminate aliased signals
leaking in at the edges of the band.

5.3. Choice of Optimization Approach

The various tests described in Appendix A demonstrate that,
of the various optimization approaches we tried, the best method
for this problem is L-BFGS in lag-space from Proximate initial
conditions; we therefore utilize that method.

6. OBSERVATIONS OF PSR B1937+21

All of the data utilized in this paper are Arecibo observations
of PSR B1937+21 (Backer et al. 1982), at radio frequencies
close to 428 MHz. The ATNF Pulsar Catalogue9 (Manchester
et al. 2005) reports the following characteristics for this pulsar:
a period of 1.558 ms, a dispersion measure of 71 pc cm−3

(Cognard et al. 1995), and a mean 400 MHz flux of 240 mJy
(Foster et al. 1991). Most of the data we use come from a single
4 MHz band centered on 428 MHz, with the exception being
an additional 4 MHz chunk, centered on 432 MHz, that we use
exclusively in Section 6.3 (intrinsic pulse profile determination).
We observed at three different epochs: MJD53791, MJD53847,
and MJD53873. Dual-polarization voltages were recorded for
intervals of order an hour at each epoch, using the Arecibo
Signal Processor baseband recorder (ASP; Demorest 2007),
with digitization at 8 bits per sample. This high dynamic
range sampling proved valuable in mitigating the effects of RFI

9 www.atnf.csiro.au/people/pulsar/psrcat

(Section 6.4). We did not attempt any polarization calibration for
our data; all the results reported here are based on summing the
two polarizations (i.e., the orthogonal feeds of the telescope), as
an approximation to Stokes-I.

Individual cyclic spectra were generated from the recorded
voltages, using the method described by Demorest (2011). In
our first processing of the data we constructed cyclic spectra,
averaged over 15 s, with 6230 radio frequency channels and 511
pulse-phase bins. These values were chosen so as to make Δν
as nearly equal to Δα as possible, because our first attempts at
modeling H and Sx (using the method described in Section 3),
avoided interpolations. However, the improved fitting method
described in Sections 4 and 5 employs precise interpolation, so it
is no longer necessary to match the resolutions in this way. Nor
is it preferred, as array sizes which are integer powers of two are
better matched to the Fast Fourier Transform algorithm, which
we utilize. All the tests of our optimization software, reported
in an Appendix, were conducted on the cyclic spectra obtained
in our first processing of the data.

Analysis of the cyclic spectra from our first processing
revealed some leakage at the edges of the bandpass filter.
This is undesirable, particularly because any out-of-band signal
is aliased by ±4 MHz, and will thus appear delayed by
approximately ±30 ms due to incorrect dedispersion. In turn
this leaked signal may introduce low-level contamination into
our profile estimates or our filter models, or both. We therefore
decided to completely reprocess our data, to deal with the
leakage and to correct some other minor defects of which we
were aware.

In the second processing we produced cyclic spectra averaged
over 15 s, with 4608 channels and 1024 pulse-phase bins. This
reprocessing utilized the cyclic spectrum implementation now
freely available as part of the DSPSR software package10 (van
Straten & Bailes 2011). To eliminate the aliased (leakage)
signals we then trimmed the spectral array down to 4096
channels, so the final bandwidth was approximately 3.56 MHz.
With the exception of Sections 6.1 and 6.2, all of the results
presented in this section were obtained using the trimmed cyclic
spectra from the second processing of our data.

6.1. Bandpass Filter

If we want to know the profile of the bandpass filter of
our instrument, there are two methods available to us. We can
measure the average total power as a function of radio frequency,
or we can make use of the filter functions, H, obtained from our
fitting. (One can also inject artificial pulsed power, of known
spectral shape, into the signal chain, but we did not record
such data.)

Our estimates of H incorporate all of the filtering imposed on
the signal. We expect there to be contributions from the ISM, the
solar wind, Earth’s ionosphere, and from our instrument (tele-
scope, front-end and back-end). Of these various contributions,
only the receiver system is expected to be stable over long time-
scales. As H is a complex quantity, averaging it will yield zero,
but we can instead form 〈|H (ν)|〉, which we take as an estimate
of the bandpass filter, |Hrec(ν)|. Averaging over all filter solu-
tions for all three epochs, we obtain the result shown in Figure 1
for |Hrec(ν)|. Also shown in Figure 1 is the result of estimat-
ing the bandpass in a more traditional way, using the square-
root of the average total power:

√〈D(0, ν)〉. (The square-root

10 http://dspsr.sourceforge.net
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appears here because the power is a quadratic function of the
filter response.)

Although HISM fluctuates quite rapidly, the amplitude of those
fluctuations is large, so a long total observation time is required
in order to form an accurate estimate of |Hrec(ν)|. With our
three epochs combined, we have approximately 4.5 hr of data,
and the scintillation timescale is of the order of a minute, so
we expect our estimate of the filter response to be accurate to
∼6%. That is approximately the level of fluctuation seen in our
estimate of |Hrec(ν)| across most of the band. Thus, the only
clearly significant structure we find in |Hrec(ν)| is the roll-off of
the filter at the band edges. A cause for concern is the abrupt rise
in the estimated filter response at both extremes of the frequency
range. These upturns indicate that that there is some leakage of
signal from outside the nominal band of the filter.

By contrast with |Hrec(ν)|, the estimate
√〈D(0, ν)〉 shows

evidence of an upturn only at one end of the band. The reason for
this difference is unclear. The other points of distinction between
the two results are (1) that the noise on the traditional estimate
is much smaller, even though only one-third as much data was
used, and (2) RFI is manifest in the traditional estimate. To some
extent, the effect of the RFI could be mitigated by averaging
using the median estimator, rather than the mean, but this would
not help for steady interference. The reason for the lower noise
level on the traditional bandpass estimate can be seen from
Equation (10). Our solutions for H (ν)—whence the |Hrec(ν)|
estimate—are based on the pulsed power, i.e., α �= 0, whereas
the zero-modulation-frequency data, D(0, ν), are dominated by
the system noise, N (ν), which is both large and unpulsed.

As mentioned at the beginning of Section 6, the leakage at
the band edges, most evident in the lower panel of Figure 1,
can introduce low-level artifacts into our filter or pulse profile
estimates. Consequently, we decided to fully reprocess our data,
trimming off the edges of the band as we did so. The results
described in Section 6.3 and later sections of this paper were
obtained from the second processing in which the spectral band
was trimmed.

6.2. Bootstrap Approach to the Intrinsic Profile

Lacking prior knowledge of the intrinsic pulse profile, we are
obliged, as in Section 3.3, to commence our modeling using
the observed, scattered pulse profile as an approximation to the
intrinsic profile. We then obtain our first model of the filter
function, for each sample cyclic spectrum, by fitting to the data
in the way described in Section 4 and 5. The filters obtained in
this way are then used to obtain a better estimate of the intrinsic
pulse profile, and the whole process is iterated, obtaining better
approximations to Sx, and the various H, on each pass through
the data.

Once an accurate model of the intrinsic profile is obtained,
other data sets for the same pulsar taken with the same instru-
mental configuration can use that profile to obtain model filters
in a single pass through the data. However, new instrumen-
tal configurations—e.g., different observing frequencies—may
force a return to the bootstrap approach.

Because it requires multiple passes through the data, a
bootstrap can be slow. We can, however, speed things up to some
degree because at the second and subsequent profile iterations
we already have a set of model filters available, appropriate
to each recorded cyclic spectrum. These filters can be used
to initialize subsequent models prior to optimization. As our
model of the intrinsic pulse profile approaches the true intrinsic
profile, we expect the model filters to change very little between

successive iterations, so this procedure should accelerate the
optimization substantially. This expectation was borne out in
practice, as we now describe.

To enable a rapid approach to the intrinsic profile, we initially
used a subset of the data (roughly 20 minutes of observation)
from one epoch (MJD53873), iterating several times on this
subset, and then adding in the rest of the data from this epoch in
order to improve the signal-to-noise ratio of our profile estimate.
For the first set of filter solutions, using Proximate initialization,
we found that on average 289 NLopt steps were required to fit
each cyclic spectrum in the data subset. Subsequently, using the
filter models obtained at the previous iteration as our starting
point, the number of NLopt steps declined to 222, 17, and 14
for the second, third, and fourth iterations, respectively.11 The
small decrease in the required number of steps between the
third and fourth iterations, contrasting with the large decrease
between the second and third iterations, suggested that we had
reached the noise floor of the data subset, so for subsequent
iterations we utilized all of the data from MJD53873—a total
of approximately two hours.

For iteration five we needed to obtain the first filter solutions
for the bulk of the data from this epoch, using Proximate
initialization, which required, on average, 241 NLopt steps per
cyclic spectrum. However, for all subsequent iterations, we were
able to initialize our models using the previous set of filter
solutions. We found that iterations six and seven required only
12 and 3, respectively,8 NLopt steps for each cyclic spectrum,
indicating very rapid convergence of our estimate of the intrinsic
pulse profile.

Separately, we have observed, when using an existing set
of optimized filter models as our starting point, that our code
requires a minimum of three NLopt steps to return an optimized
solution, even when the same reference profile is used for
both solutions. We therefore conclude that our intrinsic profile
estimates for B1937+21 do not differ significantly between
iterations six and seven, and further iterations are unwarranted.

Use of the previous set of filter solutions to initialize our
models clearly leads to a substantial saving in computation
time. Using Proximate initialization we expect that the bootstrap
would have required a total of 10 days of CPU time, whereas
the sequence just described used only one-third of that time. In
fact, our procedure needed only one quarter more time than a
single pass through the same data using a given reference pulse
profile.

6.3. Intrinsic versus Scattered Profile

In Figure 2 we show our estimate of the intrinsic profile,
together with the scattered profile, using all the data from
MJD53873. This epoch was chosen because we obtained signif-
icantly more data on that date than on either of the other epochs.
As expected, the intrinsic modulation profile of the signal is
much sharper than the apparent modulation, because of the con-
tribution of the scattered (delayed) waves to the apparent profile.
The “scattered tail” of the pulse is absent from our estimate of
the intrinsic profile.

Figure 2 (lower panel) also reveals the presence of several
low-level (a fraction of 1% of the peak height), but sharp
features in the “baseline” of the intrinsic pulse. These features
are difficult to recognize in the scattered profile for two reasons.
First, interstellar scattering broadens them, while decreasing
the peak amplitude of each. Second, the features that are present

11 These step-counts refer to the first processing of the data.
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Figure 2. Intrinsic (red) and scattered (black) pulse profiles for B1937+21, at
428 MHz, observed on MJD53873. Two complete rotations are shown. The
zero-point of the profile amplitude is arbitrarily chosen, whereas phase-zero
corresponds to the peak of the (intrinsic) main-pulse. The top panel shows the
full range of the pulse, while the lower panel shows a close-up of the lowest 3%
of the profile.

(A color version of this figure is available in the online journal.)

immediately after the main-pulse or the inter-pulse are swamped
by the delayed signal from those two, very strong components
of the pulse profile.

An equivalent description of the pulse modulation is available
by Fourier transforming the scattered and intrinsic profiles. The
resulting harmonic powers are shown in Figure 3, demonstrating
that the high harmonics of the intrinsic profile contain a great
deal more power than the scattered profile. This is just as
expected. The scattered profile is a convolution of the intrinsic
profile with the impulse response function, so in the Fourier
domain the relationship is multiplicative, and the multiplier
declines from near unity at low harmonic numbers to very small
values at high harmonic numbers.

Because the low-level features evident in Figure 2 are seen
here for the first time at these radio frequencies, and the signal
processing we have used to reveal these structures is itself novel,
we would like to have some confirmation of their reality. We
have therefore undertaken a completely independent bootstrap
estimate of the intrinsic profile for another epoch, MJD53791.
In this comparison we are not interested in any timing (pulse-
phase) offset between the two epochs, so in comparing the two
intrinsic profiles we have applied a pulse phase shift and a
scaling, chosen so as to minimize the difference between the
profiles.

Figure 3. Intrinsic (right-hand-side: positive harmonics) and scattered (left-
hand-side: negative harmonics) pulsed power vs. harmonic number for
B1937+21, at 428 MHz, observed on MJD53873. The pulse profile is real,
so the power-spectrum is an even-function of the harmonic number. Odd num-
ber harmonics (i.e., α = (2m+ 1)Ω, with m an integer) are shown in black; even
number harmonics are shown in red.

(A color version of this figure is available in the online journal.)

Figure 4. Comparison of intrinsic pulse profiles derived independently for
MJD53873 and MJD53791. The mean of these profiles is shown in the upper
curve, while the difference is shown in the lower curve. The scaling of this plot
is as for Figure 2, so the full scale of the mean profile has a range of 100. For
clarity of presentation, arbitrary vertical offsets have been applied to both the
mean and the difference profiles. Two complete rotations are shown.

The result of our two independent bootstrap solutions can
be seen in Figure 4, where we show the mean of the intrinsic
profiles and their difference. The latter curve appears noise-
like, without any clearly significant differences between the two
independently derived intrinsic profiles. In particular, we note
that the largest differences occur underneath the main-pulse and
inter-pulse components, where the signal is very strong and the
noise is therefore greater than at other pulse phases. There is no
apparent systematic difference between the two profiles at those
pulse-phases where the weak, low-level features are seen.

As a final reality check of the features revealed in Fig-
ures 2 and 4, we have also compared the intrinsic pulse pro-
files obtained from independent bootstrap estimates at two
different frequencies, 428 MHz and 432 MHz, for the epoch
MJD53791—this comparison is shown in Figure 5. Although
the 432 MHz data exhibit more system noise than the 428 MHz
profile, because the integration time for the latter is larger by
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Figure 5. Comparison of intrinsic pulse profiles derived independently at
428 MHz (upper, black line) and 432 MHz (lower, black line) for MJD53791.
The scaling of this plot is as for Figure 1; arbitrary vertical offsets have been
applied, for clarity, and two complete rotations are plotted. The red/blue curves
show calculated profiles appropriate to leakage signals at the lower/upper edge
of the 4 MHz band of the 428 MHz (upper curves) and 432 MHz (lower
curves) data. These signals are delayed/advanced by roughly 30 ms, as a result
of aliasing and the associated incorrect dedispersion. Normalization of the red/

blue curves is arbitrarily chosen. We find no indication of residual contamination
by signal leakage in our results (see the text, Section 6.3).

(A color version of this figure is available in the online journal.)

a factor of 1.5, the two profiles appear otherwise very simi-
lar in respect of the low-level features which are revealed by
construction of the intrinsic profile.

An important aspect of the inter-band comparison in Figure 5
is that it excludes signal leakage (Section 6.1) as a possible
origin for the low-level structures which we see in the intrinsic
profile. Even though we have trimmed the band edges, which
should eliminate the bulk of that problem, it is possible that some
traces of leakage remain. This concern is heightened by the fact
that the sharp feature at a pulse phase of 500 μs lies close to
the expected location of the aliased main pulse component, for
signals leaking across the low-frequency edge of the 428 MHz
band (upper red curve in Figure 5). The inter-band comparison
makes it plain that this is not a viable explanation for that
feature, because at 432 MHz the corresponding alias should lie
at 1200 μs, where no profile feature is seen—yet the observed
500 μs peak appears very similar in the two bands. We also
note that interpreting the 500 μs feature as an alias of the main-
pulse implies that there should be a counterpart feature from the
inter-pulse, roughly half a turn later, whereas no such feature
is observed in either band. Overall, the aliased signals from
the band edges do not correspond with the low-level features
we see in the pulse profiles in either band, and we conclude that
they are not due to out-of-band signals.

In fact, residual out-of-band signals are expected to appear
as broad structures in the time domain, because the dispersive
delay is a strong function of frequency. The sharpness of the
features shown in the red and blue curves in Figure 5 is
due to the fact that only frequencies immediately adjacent to the
band edges have been considered. The red and blue curves are
simply calculated as delayed (and scaled) versions of the mean
pulse profile, with the delay/advance equal to the difference
in dispersive delay between the upper and lower edges of the
band. At MJD53791 the dispersion measure of PSR B1937+21
was 71.023 pc cm−3, and the period was 1.5577 ms, so the
aliased signals appear at ±30.068 ms (428 MHz band) and

±29.240 ms (432 MHz band). Modulo the pulse period these
become, respectively, ±0.470 and ±1.201 ms.

Some of the “new” structure that we see in the intrinsic pulse
profile corresponds well with features of B1937+21 which have
been found by others, as follows. The distinct peaks seen im-
mediately after the main- and inter-pulse have previously been
observed by a number of authors at higher radio frequencies,
where the delayed, scattered signal is much weaker—see, par-
ticularly, Figure 1 of Thorsett & Stinebring (1990). Here we are
presumably seeing the emission regions which are responsible
for the giant pulses of B1937+21 (Cognard et al. 1996), and the
consequently high modulation index at these pulse phases (Jenet
et al. 2001). The sharp feature we see at a pulse phase of 500 μs
(0.3 turns) has a counterpart which was noted in L-band obser-
vations by Yan et al. (2011). Residual dispersion smearing in the
Yan et al. (2011) data is significant, so it is not surprising that
their feature appears broader than the one we observe. Finally,
the gradual rise we see in the 0.2 turns immediately preceding
the main-pulse is also manifest in the Yan et al. (2011) data.

The consistency of our intrinsic profile estimates across
different epochs and spectral sub-bands, and the connections we
can make between individual features and previous observations
of B1937+21 at other frequencies, give confidence that the
statistically significant features we see in our intrinsic profile
are indeed real.

6.4. Dynamic Spectra

A measured cyclic spectrum quantifies the power-spectrum of
the signal as the zero-modulation-frequency array D(0, ν) (see
Section 2). We compute our cyclic spectra with a cadence of
15 s, and thus we can trivially obtain a dynamic spectrum from
the temporal sequence of D(0, ν). This dynamic spectrum is a
simple time-average, not a difference of on-pulse and off-pulse
power, so it includes all power contributions: noise from the
receiver and the sky, the pulsar signal, and any terrestrial signals
reaching the receiver, i.e., RFI. Because RFI can cause severe
problems for some types of radio astronomical investigations, it
is useful to examine the dynamic spectrum in order to gauge its
impact.

Figure 6 shows the dynamic spectrum for a 512 channel
spectral segment recorded on MJD53791; RFI is manifest in
this segment as narrow spectral lines. None of these lines are
so strong that the voltage signal exceeds the dynamic range
of the sampler, nor is any impulsive RFI evident in Figure 6.
These aspects of the data reassure us that the observations
were taken under relatively benign RFI conditions, and in this
circumstance we can reasonably expect a high level of immunity
from RFI in our models of Sx and H. In particular, if the RFI
is both accurately captured and not modulated at the frequency
Ω = 1/P , or its harmonics, then cyclic spectra will be free of
RFI contamination.

To demonstrate that the observed RFI does not propagate into
our model filters, we also show in Figure 6 the squared modulus
of the dynamic filter, i.e., |H (ν, t)|2. This quantity is our estimate
of the contribution of the pulsar to the dynamic spectrum; the
spectral structure |H (ν, t)|2 can also be seen in the total power
signal. It is evident that the RFI present in the total power signal
is absent from the dynamic filter. We emphasize that the specific,
small fraction of the spectrum shown in Figure 6 was chosen at
random: it was not selected because it displays good immunity
from RFI.
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Figure 6. Inverted gray-scale image of the dynamic spectrum, D(0, ν, t) (lower
panel), recorded on MJD53791, together with the corresponding dynamic filter
power, |H (ν, t)|2 (top panel). Only a fraction (
0.44 MHz) of the recorded
bandwidth is shown; the temporal extent is approximately 98 minutes. Two short
gaps in the temporal coverage are visible as discontinuities, running horizontally
in both images. Radio frequency interference is evident in the dynamic spectrum
as thin, black, vertical lines, but it is almost completely absent from the dynamic
filter power.

6.5. Dynamic Fields

Whereas the dynamic spectrum is a quantity which pulsar
astronomers routinely measure, it has been much more difficult
to get at the dynamic electric field because the latter requires
information on the phases, and that information is usually not
explicit in the measured intensities. The requisite phases can
sometimes be retrieved—e.g., if the field is sparse in some
representation—but, to date, this has only been successfully
demonstrated for one dynamic spectrum (Walker et al. 2008).
By contrast, cyclic spectroscopy provides us with access to the
electric field envelope, including the phase information; as such,
it is an intrinsically holographic method.

There are various possible representations of the dynamic
fields because they may be described in terms of frequency-
space (filter) or lag space (impulse response) coefficients, and
the dynamic nature of the field can be represented either as a
temporal sequence or in terms of the conjugate Fourier variable,
i.e., a frequency.

6.5.1. Impulse-response Functions

Figure 7 (top panel) shows one possible representation of
the field: the real part of the impulse response function, h(τ ),

Figure 7. Impulse response function, h(τ ), for B1937+21 observed on
MJD53873. The top panel shows the real part of h (linear scale, arbitrary nor-
malization) for the first cyclic spectrum recorded at that epoch, while the lower
panel shows the average 〈|h(τ )|2〉 (normalized by the maximum of 〈|h(τ )|2〉)
over all the data taken at that epoch. The data in both plots covers a total range
of 1152 μs in delay. The impulse response function itself is characterized by
4096 complex coefficients, evenly spaced in lag.

determined from the first cyclic spectrum we observed on
MJD53873. This function spans a lag range of 1152 μs, and
we see that the amplitude of the response falls off on lag-scale
�50 μs. There is, however, a low-level tail to the response,
extending to lags that are a substantial fraction of the pulse
period. To bring out these low-level features we took the
modulus of the impulse response, and then averaged it over
all the data at this epoch of observation. The lower panel of
Figure 7 presents the resulting 〈|h(τ )|2〉, which demonstrates
that the low-level tail of h continues out to delays of at least
400 μs relative to the peak of the response.

At extreme negative lags there is an obvious rise in |h|.
The origin of this feature is not completely clear, however, a
preliminary analysis suggests that parameter covariances in {hj }
(see Appendix B) may give rise to increased noise near the lag
limits of the cyclic spectra, and we therefore consider this to be
an artifact.

On the other hand, the features seen in the vicinity of
τ ∼ +300 μs appear to be bona fide structure in h. The delay-
Doppler image, which we present in the next section, gives more
information on these features.

6.5.2. Delay-Doppler Field Images

Finally, we present our results in the Fourier domain conjugate
to (ν, t). The conjugate variables (τ, ω) have immediate physical
meaning as the delay and Doppler-shift, respectively, that
accumulate during propagation of the wave (Harmon & Coles
1983; Cordes et al. 2006). The Fourier transform, h(τ, ω), of
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Figure 8. Squared-modulus of the delay Doppler field image, |h(τ, ω)|2, for
B1937+21 observed on MJD53873. The field intensity is represented as an
inverse, logarithmic gray-scale, over a range of 50 dB (almost the full dynamic
range of the image, which is 51 dB). In this image the vertical dimension is delay,
spanning the range |τ | � 576 μs, and the horizontal dimension is Doppler shift,
with |ω| � 100/3 mHz.

the dynamic electric field, H (ν, t), is therefore a quantity of
particular interest; we call this the “delay Doppler image.”
Figure 8 shows the squared-amplitude of the delay Doppler
image for our data taken on MJD53873.

The lower half of Figure 8 is largely free of signal, as expected
for negative lags (which are acausal). The only signals that can
be recognized at negative lags are the band of scattered power
running horizontally across the figure (discussed later), and a
handful of thin, faint, vertical streaks in the region |ω| � 4 mHz,
0 > τ � −100 μs. We are uncertain as to the cause of these
streaks, but we suspect that they may be sidelobes caused by
the sharp truncation of the spectrum which we introduced by
trimming the band (Section 6.1). These streaks were not seen in
the delay Doppler image that we obtained in our first processing
of the data. The enhanced noise at extreme negative lags, plainly
seen in the average signal in Figure 7, is also present in Figure 8,
but is difficult to discern without averaging.

By contrast, in the top half of Figure 8 there is an abun-
dance of structure. Most of the power is concentrated in a
broad distribution centered on zero Doppler shift. The over-
all distribution appears to have an approximately parabolic en-
velope, as is now familiar for many pulsars (Stinebring et al.
2001; Cordes et al. 2006). However, there are also some dis-
crete concentrations of power. Most evident of these are the
concentrations in the range 200 � τ (μs) � 400 on the right-
hand side of the figure. These concentrations indicate that there
are particular regions, within a few milliarcseconds of the direct
line-of-sight to B1937+21, which are strongly diffracting, or re-
fracting signals from this pulsar into our telescope. Apparently
similar features were discovered by Hill et al. (2005), in a multi-
epoch study of PSR B0834+06, who found that their features
appear to move through the delay Doppler plane at constant ve-
locity, consistent with the observed proper motion of the pulsar.

Figure 9. Power-spectrum of the dynamic spectrum (often called the “secondary
spectrum”), |F{|H (ν, t)|2}|2, for B1937+21 observed on MJD53873. Power is
represented as an inverse, logarithmic gray-scale, over a range of 50 dB. The
full dynamic range of the secondary spectrum—i.e., the ratio of the peak value
to the noise-floor—is 80 dB.

At present we don’t know whether that property also holds for
the features seen in Figure 8.

In addition to the real structure just discussed, a strong
artifact is plain in Figure 8: around zero delay there is a
broad, horizontal stripe in the image. The nature of this feature
is clear: it is “scattered power” caused by discontinuities
between successive values of H (ν) (or h(τ )) in our temporal
sequence. These discontinuities might arise in several ways, for
example: inadequate sampling of the evolving H (ν); amplitude
fluctuations in the pulsar; arbitrary phase rotations between
successive filter solutions (per the degeneracy in overall phase,
Section 2.1); or gaps in the data record. We have considered
each of the above possibilities, but none provides a satisfactory
explanation, as we now detail.

First, the evolution of the filter H (ν) is well sampled by our
15 s cadence, as can be seen from the upper panel of Figure 6.
Second, there are ∼104 pulses within each of our cyclic spectra,
so the variations in average intensity between samples will be
small, �1%. In fact, even this variation is irrelevant to Figure 8
as we have normalized each filter solution such that it has a root-
mean-square value of unity. Third, the arbitrary phase of each
filter (see Section 2.1) has been chosen so that each solution
H (ν, tn) matches the previous solution H (ν, tn−1) as closely
as possible, in a least-squares sense. Finally, although there is
indeed a gap of 30 s in our temporal coverage (caused by a
change of hard-disk during observing), we have interpolated
across this gap before constructing Figure 8. For these reasons,
we do not expect any of these effects to be responsible for the
high levels of scattered power seen in Figure 8.

A clue to the origin of the scattered power can be found
in Figure 9, which shows the “secondary spectrum”—i.e., the
power spectrum of the dynamic spectrum, |H (ν, t)|2—for our
data. By contrast with Figure 8, this quantity shows quite low
levels of power scattered to large Doppler shifts. In forming the
spectrum, |H (ν)|2, we are erasing all information on the phase
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of the filter H (ν), so the difference in scattered power levels
between Figures 8 and 9 indicates that the source of the scattered
power in Figure 8 is phase discontinuities between adjacent
filters, H (ν). As noted above, we have matched the phases of
adjacent filters, to the extent that this can be done with a uniform
phase rotation of H. Therefore, our filter solutions contain non-
uniform phase structure that is discontinuous between adjacent
samples. In Section 4.3.1 we noted that our filter solutions
may exhibit covariance between the lag coefficients h(τm) and
h(τj ), for lag separations small compared to the pulse-width
(|τm − τj | � w), and that the poorly constrained combination
(h(τj ) − h∗(−τj )) modifies only the phase of H. We therefore
attribute the scattered power evident in Figure 8 to these
parameter covariances. We defer a detailed treatment of these
issues to a later paper.

As Figures 8 and 9 both display the response of the ISM in
the delay Doppler coordinate frame, it is worth clarifying the
relationship between them. Recall that h(τ, ω) is just the Fourier
transform of the sequence H (ν, t). Thus, the Fourier transform
of the dynamic spectrum, which is the Fourier transform of the
product H (ν, t)H ∗(ν, t), is just the convolution of h(τ, ω) with
h∗(τ, ω). Consequently, the arc that appears around the origin in
Figure 8 is echoed in a series of inverted arclets in Figure 9; each
of these arclets is centered on one of the power concentrations
visible in Figure 8—cf. Figure 5 of Walker et al. (2004). Because
the “secondary spectrum” (Figure 9) is equivalent to a self-
convolution of the delay Doppler image (Figure 8), the latter is
more fundamental and will typically be the more useful quantity
for two reasons. First, because the delay Doppler image exhibits
the scattered field with greater clarity: in the secondary spectrum
the scattered field is tangled up with itself. Second, convolution
is a smoothing operation, so faint power concentrations are more
easily seen in the delay Doppler image. These points are well
demonstrated by comparing Figures 8 and 9.

Despite the fact that Figure 9 is derived from the dynamic
spectrum, it could not have been obtained by conventional
spectroscopic methods, in which the on-pulse power spectrum is
determined within a window of width comparable to the width of
the main-pulse (or inter-pulse) component. The reason is simply
that windowing restricts the lag range of the resulting secondary
spectrum to the width of that window. Referring to Figure 2, we
see that the main-pulse would be completely contained within a
window of width ∼100 μs, so the resulting lag range would be
−50 � τ (μs) � 50—a tiny fraction of the actual lag range of
Figure 9.

7. DISCUSSION AND FUTURE DIRECTIONS

Because cyclic spectroscopy has not previously been applied
to radio pulsar signals, there are many related issues that deserve
consideration. Here we confine ourselves to a brief discussion
of three aspects that the present study calls attention to.

7.1. Precision Timing of PSR B1937+21

It is well known that the small-scale structure of the ISM can
have a significant effect on the measured arrival times of radio
pulses, in consequence of the delays (geometric and wave speed)
associated with signal propagation (e.g., Foster & Cordes 1990).
These effects are of particular importance if they are epoch-
dependent, which is the case if the scattering properties of the
medium are not statistically uniform transverse to the line-of-
sight. It is plain to see from Figure 8 that some of the scattering
material toward B1937+21 is indeed very clumpy, with several

flux concentrations appearing far from the origin, albeit at low
power levels. Previous studies of the dispersion and scattering
on this line-of-sight (Cordes et al. 1990; Ramachandran et al.
2006) preferred a near-Kolmogorov model of the structure, but
the clumpiness we see is quite different from the expectations
of a uniform Kolmogorov model (Cordes et al. 2006; Walker
et al. 2004). As B1937+21 is routinely used for precision timing
experiments (e.g., Verbiest et al. 2009), a better understanding
of this scattering material is desirable.

It has previously been reported (Cognard et al. 1993; Lestrade
et al. 1998) that B1937+21 occasionally exhibits timing fluctua-
tions, correlated with flux variations, whose properties are sug-
gestive of “Extreme Scattering Events”—that is, plasma lensing
events (Fiedler et al. 1987, 1994; Romani et al. 1987). Such
events require close alignment between the observer, plasma
lens, and pulsar, and these events are consequently rare. If the
alignment is not so close then the lens will cause smaller flux
changes, but may still have a significant effect on the pulse ar-
rival time because the extra path length traversed by the faint
images may be large. Furthermore, these poorly aligned lens
configurations should be relatively common. It is possible that
plasma lensing is responsible for the discrete flux concentrations
that we see in the vicinity of τ ∼ 300 μs (Figures 7 and 8),
with each concentration being due to one or more additional
faint images. We note that at this epoch (MJD53873) the fea-
tures appear at such large delays that the scattered pulse has
little overlap with the unscattered signal, so the pulse arrival
time estimate should not be greatly affected. However, at later
epochs, when the scattering structures are closer to the line-of-
sight to the pulsar, the scattered signals may appear at delays
τ ∼ 100 μs where they can exert a substantial influence on the
measured arrival time. We defer a quantitative examination of
pulse arrival-time variations to a later paper.

Depending on the electron column density structure, and the
pulsar-lens-observer configuration, several additional images
may arise from one plasma lens, so it is possible that all of the
flux concentrations we see near τ ∼ 300 μs in Figures 7 and 8
are due to a single lens. Under that hypothesis, the observed
range of delays (200 � τ (μs) � 400) tells us something about
the size of the lens. Assuming that the pulsar is at a distance
∼5 kpc, and that the lens is near the midpoint, one finds that the
lens diameter is ∼4 AU. This is comparable to the dimensions
that have previously been inferred for the lenses responsible for
Extreme Scattering Events (e.g., Romani et al. 1987).

Unfortunately, with the techniques currently available to us,
it is not possible to distinguish between lens-like, refractive
behavior and diffractive scattering as the cause of the observed
power concentrations around τ ∼ 300 μs. The clearest way to
distinguish between these possibilities would be to undertake
rigorous, quantitative physical modeling of the particular wave
propagation paths for this line-of-sight at the epoch(s) of
observation. Such modeling would also tell us the relationship
between the pulse arrival times actually observed, and those
that would have been observed in the absence of the scattering
medium. Physical modeling is, however, beyond the scope of
this paper.

7.2. Cyclic Spectropolarimetry

We have seen how cyclic spectroscopy gives access to
the intrinsic modulation (pulse) profile of the signal, and
that this can reveal new structure (Figure 2) which is other-
wise masked by the effects of scattering. It is the sharp fea-
tures of the profile—those which include a large fraction of
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high-modulation frequency Fourier components—which are
most affected by the scattering. All the results shown in this
paper are based on a signal combination which approximates
Stokes-I (recall that our data have not been polarization cal-
ibrated). However, many pulsars exhibit highly polarized ra-
dio emission, and the polarized pulse profiles may be quite
complex (van Straten 2006; Johnston et al. 2008). For exam-
ple, there are pulsars where the profile shows rapid transitions
between orthogonal, elliptically polarized states—usually re-
ferred to as “orthogonal mode jumps.” Such transitions will be
strongly affected by any filtering (temporal smearing) of the
signal (Karastergiou 2009). More generally, it is clear that in-
terstellar scattering can have a profound effect on the apparent
polarization properties of pulsars at low frequencies (Li & Han
2003; Kramer & Johnston 2008), and we therefore expect the
fidelity of polarization profiles to improve substantially when
intrinsic profiles, rather than scattered profiles are used.

Furthermore, it has been emphasized by van Straten (2006)
that the most accurate pulse timing requires accurate polarime-
try. These are strong motivations to further develop the methods
of this paper to encompass cyclic spectropolarimetry.

7.3. Covariance of Filter Coefficients

In Section 4.3.1 we drew attention to the issue of covariance
amongst the parameters describing the filter coefficients (or,
equivalently, the impulse-response coefficients). The effects of
these covariances are not easy to quantify because (1) the total
number of parameters needed to describe the filter is very large
(∼104 in the present case), and (2) the covariances depend on
the properties of both the filter and the pulse profile—neither of
which is known a priori. What is clear, though, is the qualitative
point that the actual uncertainty in the filter coefficients can be
much larger than the standard deviation for a single parameter
taken in isolation.

We have argued that there are two aspects of the impulse-
response functions, seen in Figures 7 and 8, that are probably
due to parameter covariances. One of these—the power near
zero delay, scattered to large Doppler-shifts—is a very strong
feature indeed, being evidently well above the noise floor and
potentially masking real features of h(τ, ω). In other respects,
cyclic spectroscopy seems to be a near ideal tool for studying the
propagation of radio pulsar signals, and the issue of parameter
covariance consequently deserves further study.

We can identify two aspects that merit particular attention.
The first is a thorough understanding of the origin of parameter
covariance, and thus how it manifests itself in different repre-
sentations of the data. Our preliminary analysis (Section 4.3.1)
suggests that strong covariance can be traced to pure-phase mod-
ifications of the filter. That analysis was only carried through
for the simplest possible filter model (H (ν) = 1), and needs
to be revisited using more general models. In cases where the
data cannot constrain pure-phase modifications of the filter to
be small compared to 1 radian, the problem is akin to one
of phase-retrieval. Such problems are notoriously difficult, and
the difficulty is associated with non-convexity of the target set
(Bauschke et al. 2002).

With an understanding of the origin of the covariances, one
would be in a good position to tackle the key question of how
to mitigate their effects on the filter models. For example,
in Section 4.3.1 we noted that the well-determined/poorly
determined parameter combinations are sum/difference terms
of h(τj ) and h∗(−τj ), so one might think of enforcing causality
in the solutions, such that h(τj ) = 0 for all τj < 0.

8. SUMMARY AND CONCLUSIONS

Cyclic spectroscopy of PSR B1937+21 was undertaken with
a 15 s cadence over a 4 MHz band at 428 MHz, starting from
voltages recorded with the Arecibo radio telescope. By least-
squares fitting, we determined the impulse response function of
the ISM for each cyclic spectrum separately, and the intrinsic
pulse-profile averaged over the whole observation. In this way
we obtained the 428 MHz pulse profile of B1937+21 free of
the influence of interstellar scattering, revealing some weak, but
sharp features that had not previously been seen at low radio
frequencies.

From our temporal sequence of impulse-response functions,
we derive the delay Doppler field image. This image exhibits
a noise floor at −51 dB relative to the peak power, and we are
thus able to see faint features in the angular structure of the
received field. Several power concentrations are visible in the
delay range 200–400 μs. These concentrations can plausibly
be attributed to a single plasma lens, a few AU in diameter,
but alternative interpretations are possible. Regardless of their
physical origin, the scattered power concentrations are expected
to have a deleterious effect on the pulse timing experiments that
are utilizing this pulsar. To accurately describe and remove these
effects, it is necessary to have a physical model of the various
propagation paths by which the signal reaches the telescope.
We did not attempt any physical modeling, but we have shown
that cyclic spectroscopy provides us with a large quantity of
information on these paths, and thus facilitates that process.

We caution that our fitting procedure is adversely affected
by covariance amongst some combinations of the ∼104 fit
parameters. These covariances were identified as the origin
of the scattered power artifact in our delay Doppler image.
Parameter covariance appears to be the main challenge currently
facing widespread application of cyclic spectroscopy.

We thank Dan Stinebring for helpful discussions that
prompted our examination of parameter covariances. This paper
is dedicated to the memory of Don Backer.

APPENDIX A

TESTS OF THE FILTER OPTIMIZATION CODE

Here we describe tests which we have undertaken to evaluate
the performance of our software. Three different aspects of the
optimization were compared: L-BFGS versus other algorithms;
lag-space versus frequency-space optimization; and Unit versus
Proximate initializations. All of these comparisons were made
using cyclic spectrum samples nos. 2–11 of PSR B1937+21
recorded at Arecibo on MJD53873 (first processing of the data:
see Section 6).

We do not expect that our conclusions regarding the rel-
ative merits of the different optimization paths are machine-
dependent. However, for reference, the machine used for these
tests was a MacBook Pro with a dual core 2.7 GHz Intel pro-
cessor and 8 GB RAM installed. With this machine almost all
algorithms required approximately 2 s to complete a single iter-
ation, so run-times for the various approaches can be compared
directly from the number of steps required to complete the op-
timization.

Table 1 sets out the results of our tests. The first three columns
show the NLopt algorithm used, the space in which the filter was
optimized, and the initialization conditions. Column four shows
the average number of steps (rounded to the nearest integer)
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Table 1
Results of Modeling ten Sample Cyclic Spectra

NLopt Lag or Unit or Avg. Best δMmin

Algorithm Freq. Prox. Step No. (σ 2)

L-BFGS Lag Prox 227 3 0
L-BFGS Freq. Prox 262 3 3
L-BFGS Lag Unit 514 3 8
VarMetric2 Lag Prox 237 9
L-BFGS Freq Unit 680 10
VarMetric2 Freq Prox 223 16
VarMetric1 Lag Prox 191 17
VarMetric1 Freq Prox 221 1 17
VarMetric2 Lag Unit 499 29
VarMetric2 Freq Unit 500 30
VarMetric1 Freq Unit 497 33
VarMetric1 Lag Unit 471 39
MMA Lag Prox 1082 309
TNewtonPR Lag Unit 2505 405
MMA Lag Unit 3394 600
MMA Freq Prox 318 616
MMA Freq Unit 1009 1119

Notes. This table summarizes the results of the tests described in
this Appendix. Each line represents the outcomes from least-squares
modeling of H (ν), or h(τ ), for 10 sample cyclic spectra of B1937+21.
In each case there are approximately 3×106 degrees of freedom and
the total number of parameters in the model is roughly 13,000.

required to find the best-fit model for the 10 sample cyclic
spectra. Column five shows the number of sample cyclic spectra
in which a particular configuration yielded the best result (i.e.,
lowest value of Mmin) out of all of the configurations tested. The
final column shows the average value of Mmin, relative to the best
performing configuration, in units of σ 2 (rounded to the nearest
integer). The ordering of the outcomes in the table was dictated
by the results given in the last column, because a high-quality
fit is our main objective. In the following sections we consider
the outcomes presented in Table 1, and their implications for the
choice of optimization approach.

A.1. L-BFGS versus Other Algorithms

By design, the NLopt package makes it possible to easily
switch between a variety of different optimization algorithms,
and thus to select the best one for the task at hand: to change
algorithms is simply a matter of altering one line of code. The
algorithms available within NLopt include both global and local
methods. Global methods are not practical for our problem
because of the large-scale nature of the optimization: it would
be necessary to thoroughly search a space of ∼104 dimensions
in order to find the global minimum.

Of the local methods, there are algorithms which require
derivatives of M to be supplied, and those which do not. As
we are able to supply derivatives, and this is a major advantage
in exploring the hypersurface of M, we restrict ourselves to
those algorithms which make use of the gradient of M; there
are five such algorithms available in NLopt. One of these,
SLSQP (“Sequential Least Squares Quadratic Programming”;
Kraft 1994), had not completed a single step after more than an
hour of run time, at which point we terminated the optimization
by force. The failure of SLSQP on our optimization problem
is not surprising: it uses dense matrix methods which, for our
problem, requires ∼104 times more storage space and run time
than a limited memory algorithm.

Results for the remaining four algorithms are given in Table 1.
We can see a clear division between these four: the Method of
Moving Asymptotes (MMA; Svanberg 2002) and the Truncated
Newton method (TNewtonPR; Dembo & Steihaug 1983) both
performed poorly on our optimization task, in terms of the
quality of fit and run time, when compared to the Variable
Metric (in either rank 1 or rank 2 forms: VarMetric1,2; Vlček &
Lukšan 2006) and L-BFGS algorithms. We note the failure of
TNewtonPR to complete the optimization task from Proximate
initialization, or from Unit initialization in frequency space,
hence the omission of those results. It is clear that MMA and
TNewtonPR are uncompetitive for our optimization task and we
do not consider them further.

It is not surprising that the VarMetric and L-BFGS algorithms
yield similar results as they are similar algorithms. Nevertheless,
our tests do show a clear preference for L-BFGS over either of
the variable metric methods, with L-BFGS providing the 3 top
performing configurations, as gauged by δMmin, and 9/10 of the
best individual fits (Column 5 of Table 1).

A.2. Lag-space versus Frequency-space

We have already noted (Section 4.2) that lag space optimiza-
tion is expected to be superior to a frequency space approach,
because of the traps present in the latter space. This expectation
is borne out in practice, with lag space optimization yielding
better fits than the corresponding frequency space optimization
in almost every case in Table 1. However, the difference is not
very great. We interpret this as meaning that L-BFGS and the
VarMetric algorithms obtain enough information on the hyper-
surface of M to allow them to avoid most of the traps.

One potential problem which we noticed during our tests
is that L-BFGS, when used in frequency space, would some-
times oscillate as it progressed toward the minimum. This phe-
nomenon was most noticeable with Unit initialization; it appears
to be responsible for the 30% extra steps required for L-BFGS-
Freq-Unit relative to L-BFGS-Lag-Unit.

We note that the cyclic spectra used for these tests (see
Section 6) have typical signal-to-noise ratio greater than unity,
for low harmonic numbers, on individual channels. It remains
to be seen whether frequency space optimization remains
competitive for cyclic spectra which exhibit low signal-to-noise
ratio at all harmonic numbers.

A.3. Variation of Initialization

The algorithms tested here are local methods. That is, they
locate a minimum of M in the vicinity of the starting point,
but this minimum is not guaranteed to be the global minimum
of M. The local nature of our solutions is something that readers
should be aware of. However, reliably finding the true, global
minimum of M in a space with ∼104 dimensions is a difficult
problem which does not seem tractable with the computational
technologies currently available. Given the difficulty of finding
the true minimum of M, it behooves us to examine the sensitivity
of our results to the starting point from which the optimization
of H proceeds.

Unsurprisingly, Table 1 shows that optimization from a
Proximate initialization is roughly a factor of two, quicker
than that from Unit initialization. Also, Proximate initialization
always yields a significantly better fit for a given choice
of algorithm and optimization space. Keeping the large-scale
nature of the optimization in mind, with ∼104 parameters, some
sensitivity to the initialization conditions is not surprising.
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The fact that there are significant differences between Unit
and Proximate initializations suggests the specific question
“how far are our best results from the corresponding global
minima?” As a partial answer to that question, we can com-
pare the results of different Proximate initializations, because
each of the 10 sample cyclic spectra used in our tests has cyclic
spectra taken immediately before and immediately after, and
we can step through this sequence in either direction. Referring
to the L-BFGS-Lag-Proximate results in Table 1 as “Forward”
initialization, we find that the corresponding “Backward” ini-
tialization typically gives worse results, with the average Mmin
being larger by 7σ 2 and needing 31 more steps per cyclic spec-
trum, on average, to complete. Forward initialization produced
a better fit than Backward for 8 of the 10 spectra,12 and the
root-mean-square difference between the corresponding Mmin
values is approximately 21σ 2. Clearly, the variations of the
L-BFGS-Lag-Proximate outcomes, relative to the true minimum
for each spectrum, must therefore be at least as large as 21σ 2,
indicating that there is room for some significant improvement.

This point was confirmed by the following: we ran the whole
suite of optimization tests again, but with a tighter fractional
tolerance on M of 0.01/Ndof for the stopping criterion. For each
of the 10 sample cyclic spectra, we took the lowest value of Mmin
(regardless of the configuration which achieved that result) as a
reference point. Compared to that reference point, we find that
the best-performing configuration of the standard-precision tests
(i.e., L-BFGS-Lag-Prox; Table 1) is worse by δMmin 
 41σ 2,
on average, for each cyclic spectrum.

In the high-precision suite of tests, we observed that none
of the consistent outcomes of Table 1—i.e., L-BFGS better
than other algorithms, Prox better than Unit, Lag better than
Freq—were reproduced. Not surprisingly, the differences in
Mmin amongst the 12 tested configurations were considerably
smaller than shown in Table 1, with the worst performing
configuration being only 7σ 2 above the best (cf. 39σ 2 in
Table 1). These facts suggest that in the high-precision tests, all
configurations have penetrated well into the noise-limited region
of the optimization. The penalty for doing so, of course, is that
many more steps are required to achieve that outcome—784
steps, on average, for L-BFGS-Lag-Prox, which is more than
three times the number of steps required to satisfy our usual
stopping criterion (see Table 1).

APPENDIX B

ESTIMATION OF MODEL UNCERTAINTIES

We have already determined the curvature of M with respect to
the coefficients describing Sx and H (Equations (28) and (29)).
For the parameters describing the lag space representation of
the filter, the curvatures can be obtained by taking the real and
imaginary parts of the relations

∂2M

∂hrm ∂hrj

+ i
∂2M

∂hrm ∂hij

= Amj + Cmj , (B1)

and
∂2M

∂him ∂hij

− i
∂2M

∂him ∂hrj

= Amj − Cmj , (B2)

12 This level of asymmetry between Forward and Backward initialization is
slightly surprising, being that it was expected only once in 18 trials, but we
have no explanation for it other than that it was a random occurrence.

where the matrices A and C are given by

Amj = 4

N3
ν

∑
n,α �=0

|Sx(α)|2 cos[2πα(τj − τm)]h∗
n hn+j−m, (B3)

and

Cmj = 4

N3
ν

∑
n,α �=0

|Sx(α)|2 cos[2πα(τj − τn)]hn hm+j−n. (B4)

Here we have used notation such that hn+j−m means h(τn + τj −
τm), for example, and we have neglected the contribution from
a sum over the residuals, whose expectation is zero.

B.1. Noise Levels for H (ν) = 1

It is clear that the uncertainties in our parameter estimates
depend on the filter coefficients and intrinsic pulse profile.
However, for our purposes here it suffices to determine rough es-
timates of the parameter uncertainties. To proceed we therefore
consider the particular case H (ν) = 1. For this circumstance
we obtain

∂2M

∂S2
rm

= ∂2M

∂S2
im

= 4 Nν, (B5)

and
∂2M

∂H 2
rk

= ∂2M

∂H 2
ik

= 4F 2, (B6)

where F is a measure of the total pulsed flux, with

F 2 :=
∑
α �=0

|Sx(α)|2. (B7)

For the lag representation of the filter we find

∂2M

∂h2
rj

= ∂2M

∂h2
ij

= 4

Nν

F 2, (τj �= 0), (B8)

and for τj = 0 the curvature with respect to the real part of the
coefficient hj is twice this value, whereas there is no curvature
with respect to the imaginary part. This last point, which implies
a formally infinite uncertainty, should not cause concern because
the overall phase of the filter is completely arbitrary.

Using Equation (39) we can immediately translate these
curvatures into standard deviations. The results are

δSm = σ√
2Nν

, (B9)

δHk = σ

F
√

2
, (B10)

and

δhj = σ

F

√
Nν

2
, (τj �= 0). (B11)

In all these cases the coefficients are complex. The quoted
uncertainty is the uncertainty in the real part of the coefficient,
which is equal to the uncertainty in the imaginary part. With
the exception of one coefficient of h, the standard deviation is
uniform across each set of coefficients.

In practice, the system noise, σ , is dependent on the total
number of radio-frequency channels, Nν , because we have a
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fixed total bandwidth, B, for the instrument. Thus, NνΔν = B,
and Equation (14) can be written

σ = Ssys

√
Nν

B Δt
. (B12)

A further simplification is appropriate. For cyclic spectroscopy
of a pulsar with period P, the pulsar’s rotation frequency
Ω = 1/P is necessarily equal to the spacing in modulation
frequency, Δα, and in turn this is the natural choice for
channelization, Δν. Thus the natural configuration is PB = Nν ,
and for this circumstance we obtain

δSm = Ssys√
2B Δt

, (B13)

δHk = Ssys

F

√
P

2Δt
, (B14)

and

δhj = SsysP

F

√
B

2Δt
, (τj �= 0). (B15)

B.2. Noise Levels for More General Filters

The curvature of the demerit function with respect to the
various model parameters depends on the structure in the filter
functions, as manifest in Equations (28), (29), (B3), (B4), but
we have so far considered only the simplest filter, H (ν) = 1. We
now consider how structure in the filter affects the noise level
on various parameters.

It is, of course, possible to concoct bizarre examples of
filters which imply correspondingly unusual noise properties.
We shall, however, ignore such possibilities as our purpose
here is to describe what one might normally expect to en-
counter in practice. To that end we will restrict our discus-
sion to cases where 〈|H (ν)|2〉 ∼ 〈|H (ν)|4〉 ∼ 1, and we
will characterize the impulse-response function by a typi-
cal scattering time, τs , corresponding to a filter decorrelation
bandwidth ∼1/τs .

Consider first the noise level for the pulse harmonic coeffi-
cients. For low harmonics the summation in Equation (28) is ap-
proximately Nν〈|H (ν)|4〉. However, at higher harmonics, where
|αm|τs ∼ 1, there is some decorrelation between |H (ν −αm/2)|
and |H (ν +αm/2)| and the sum declines. In the limit of complete
decorrelation, |αm|τs 	 1, the summation yields Nν〈|H (ν)|2〉2.
Providing that both second- and fourth-order expectation values
are of order unity, this is not a big effect. For example, in the ran-
dom phasor picture for the electric field the intensity statistics
are exponential, so 〈|H (ν)|2〉 = 1 and 〈|H (ν)|4〉 = 2, yielding a
noise level for high harmonics which is

√
2 larger than for low

harmonics. In this picture, the noise level for high harmonics
coincides with the value quoted in Equation (B13), for the case
H (ν) = 1.

Quite a different situation arises for the filter coefficients Hk.
It is evident that the curvatures given in Equation (29) may
be much less than 4F 2 in regions where the filter function is
small, with correspondingly large errors on those coefficients.
As with the noise on the pulse harmonics, there are two different
limiting cases relating to the value of the typical scattering time.
Most of the pulsed flux, F, is contributed by harmonics up
to |αm| ∼ 1/w, where w is the temporal width of the pulse. If
τs � w then the filter function H (νk−α) is almost constant over
the range of α which contributes most to F, so the curvature in

Equation (29) becomes 4F 2|Hk|2. Clearly this curvature could
be very large (small) in comparison with the estimate given in
Equation (B6), leading to correspondingly small (large) errors in
the Hk estimates. In the opposite limit, where τs 	 w, the filter
coefficient |H (ν − α)| changes rapidly with harmonic number
and we obtain a curvature estimate ∼4F 2〈|H (ν)|2〉 ∼ 4F 2,
comparable to that given in Equation (B6).

Finally, we consider the effect of a structured filter on
the errors associated with the lag space filter coefficients, hj.
The curvatures of the merit function with respect to real and
imaginary parts are (Equations (B3) and (B4)) made up of
two terms. The first term is the same in both cases and we
expect it to be 4F 2〈|H (ν)|2〉/Nν ∼ 4F 2/Nν . The second term
differs in sign between the real and imaginary parts of the
coefficients; it is the real part of a sum of complex numbers. In
normal circumstances those complex numbers bear no particular
phase relationship to each other, so the second term is typically
small in comparison with the first. We therefore neglect it,
and we conclude that in normal circumstances the curvatures
given in Equation (B8) are appropriate to all lag space filter
coefficients.
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