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Abstract

We present hydrostatic equilibrium models of spherical, self-gravitating clouds of helium and molecular hydrogen,
focusing on the cold, high-density regime where solid- or liquid-hydrogen can form. The resulting structures have
masses from 0.1Me down to several ×10−8Me, and span a broad range of radii: 10−4R(au)107. Our
models are fully convective, but all have a two-zone character with the majority of the mass in a small, condensate-
free core, surrounded by a colder envelope where phase equilibrium obtains. Convection in the envelope is unusual
in that it is driven by a mean-molecular-weight inversion, rather than by an entropy gradient. In fact, the entropy
gradient is itself inverted, leading to the surprising result that envelope convection transports heat inward. In turn,
that permits the outer layers to maintain steady-state temperatures below the cosmic microwave background.
Among our hydrostatic equilibria we identify thermal equilibria appropriate to the Galaxy, in which radiative
cooling from H2 is balanced by cosmic-ray heating. These equilibria are all thermally unstable, albeit with very
long thermal timescales in some cases. The specific luminosities of all our models are very low, and they therefore
describe a type of baryonic dark matter. Consequently such clouds are thermally fragile: when placed in a harsh
radiation field, they will be unable to cool effectively and disruption will ensue as heat input drives a secular
expansion. Disrupting clouds should leave trails of gas and H2 dust in their wake, which might make them easier to
detect. Our models may be relevant to the cometary globules in the Helix Nebula and the G2 cloud orbiting Sgr A*.
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1. Introduction

Understanding the structure of self-gravitating bodies is a
fundamental aspect of many branches of astronomy: galaxies,
stars, and interstellar clouds, for example. Modeling such
systems is greatly simplified by assuming time-independence
and spherical symmetry. But even with these assumptions, a
diverse collection of structures can arise, depending on the
equation of state of the fluid and the boundary conditions—
witness the variety encountered in the aforementioned
disciplines. In this paper we explore a new set of time-
independent, spherically symmetric, self-gravitating equilibria,
appropriate to fluids composed of helium and molecular
hydrogen, in which the combination of low temperature and
high density permits solid- or liquid-hydrogen to condense.

The motivation for this study has its roots in the idea that
molecular gas that is cold and dense would be very difficult to
detect, and therefore large amounts of such gas could be
present, yet remain undetected, in galaxies (Pfenniger &
Combes 1994; Pfenniger et al. 1994). Indeed Pfenniger and
Combes argued that the presence of such a reservoir may help
in understanding the observed properties of star-forming
galaxies. In these original papers it was recognized that the
molecular hydrogen component would be close to its saturated
vapor pressure and might therefore be able to condense.
However, the original concept of a fractal character for the gas
clouds does not lend itself to detailed structural modeling (e.g.,
Pfenniger 2008). Subsequent studies considered the possibility
of cold, dense gas in long-lived, spherical clouds—see, for
example, Henriksen & Widrow (1995), Gerhard & Silk (1996),
Draine (1998), Walker & Wardle (1998), Sciama (2000)—for
which structural modeling is tractable. But to date the effects of
the H2 phase change have been investigated only in “one-zone”
models, where the entire body is characterized by a single,

representative value of the temperature, pressure, and so on
(Wardle & Walker 1999; Füglistaler & Pfenniger 2015, 2016).
This paper presents models in which full radial profiles are
constructed, providing the first detailed pictures of clouds
manifesting H2 condensation.
Because of the steep temperature dependence of the

saturated vapor pressure curve (see Figure 1), a basic
expectation is that the outer layers of dense clouds are more
favorable for condensation than the interiors. Indeed all of our
models exhibit a central region that is sufficiently warm that no
condensation of H2 takes place there. We refer to that central
region as the “core” of the cloud, and the outer regions, where
condensation occurs, as the “envelope.” When discussing H2

condensates, we will usually refer only to the solid—that is,
hydrogen “snowflakes” rather than hydrogen droplets—and we
refer to our model structures as “snow clouds.” This is not
meant to be prejudicial, as liquid droplets can form under some
circumstances and the physics is qualitatively similar for the
two condensed phases. Rather, it is a convenient brevity of
expression. We will see, however, that clouds incorporating
both liquid and solid condensates occupy only a small region of
the mass–radius plane compared to pure snow clouds
(Section 3), so a degree of emphasis on the solid form is
appropriate. Moreover, our adopted description of the equation
of state in phase equilibrium (Section 2.6) is much more
accurate for the solid-gas transition than for the liquid-gas
boundary, and our rain-cloud models should be thought of as
very rough sketches.
Even rough sketches can be valuable if they are novel. The

solutions we have obtained display properties that were not
anticipated in earlier work and that broaden the range of
possible structures for interstellar clouds. For example, McKee
(2001) used polytropic models to highlight problems with
models of self-gravitating molecular clouds that have both high
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densities and low temperatures—precisely the corner of
parameter space we are interested in. We address the issues
in detail later in this paper (Sections 4.1, 5.1, and Appendix A),
but for now we note one key point of difference: McKee (2001)
assumed that the temperature of the cosmic microwave
background (CMB) sets a floor on the gas temperatures within
any cloud in steady state, whereas our models exhibit much
lower temperatures in their outer regions. Steady-state
temperatures below the CMB are permissible in our models
because heat is convected from those regions to the warmer
interior, whence it is radiated away. Convection of heat up a
macroscopic temperature gradient is unfamiliar, even counter-
intuitive, and does not seem to have been dealt with previously
in the literature. We give details in Section 4 and Appendix A,
but the main point is simply that heat flows down the entropy
gradient, and entropy increases outward in the envelopes of our
model clouds, with convection being driven by a composition
gradient.

The structure of this paper is as follows. We begin in
Section 2 by presenting the various ingredients required to
construct our hydrostatic models, including a derivation of the
equation of state of the fluid. In Section 3 we use those
ingredients to construct hydrostatic equilibria. We show one
example structure in detail, and we illustrate how models
populate the mass–radius plane. In addition to being hydro-
static, true equilibrium structures must also be in thermal
balance, so in Section 4 we describe the thermal properties of
the hydrostatic solutions. We consider thermal balance locally
—i.e., energy flow within each cloud—and globally (i.e., total
heating balanced by total radiative cooling). We identify a
subset of the hydrostatic models that are indeed thermal
equilibria; those equilibria are, however, subsequently shown
to be thermally unstable. Finally, in Section 5 we consider
various issues with the models, and we suggest possible
manifestations in the observed universe.

2. Hydrostatic Model Ingredients

2.1. Equations of Hydrostatic Equilibrium

We assume that the clouds are spherical and in hydrostatic
equilibrium, so that the pressure and mass gradients are given
by

r p r= - =
dP

dr

GM

r

dM

dr
r, 4 , 1

2
2 ( )

just as in the case of stars (e.g., Kippenhahn & Weigert 1994).
It is convenient to work in terms of the normalized variables
P̃≡P/Pc and r̃≡ρ/ρc, where Pc and ρc are the central
pressure and density, respectively. We are also free to choose a
scaling, ro, for the radial coordinate and work in terms of
z≡r/ro. Whatever radial scale is chosen we can introduce a
corresponding mass scale, p r=M r4o o c

3 , and employ the
dimensionless variable m≡M/Mo. We choose the radial scale

rr GM Po o c c≔ .
Instead of using z as the independent variable, we have

found it most convenient to use ºq Plog ˜. The equations of
hydrostatic equilibrium then read
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The main advantage of this choice is that q is known at all three
boundaries of the structural problem—inner boundary (q=0),
core-envelope boundary (see Section 3.2), and outer boundary
( = -¥q ), so one integrates over two predetermined ranges of
the independent variable, using the appropriate equation of
state in each case. By contrast, the values of z and m, for
example, are initially known only at the inner boundary.
Use of q rather than P̃is motivated by our desire for an

accurate structural model over a broad range of pressure. That
is a significant consideration for our models because, as we will
see in Section 3, it is often the case that most of the volume is
occupied with fluid at pressures P̃1. A disadvantage of our
coordinate choice is that the domain of numerical integration
cannot extend to the true surface of the cloud at = -¥q . But
that is only a small disadvantage, because one can explore to
arbitrarily low pressures.

2.2. Composition

In Section 5 we suggest possible connections between our
models and the observed universe. As metals provide most of
the information on the latter, there is a clear motivation to
include them in our model clouds. However, adding metals
greatly increases the complexity of the modeling and the
dimensionality of the parameter space in which the models are
constructed. These are strong motivations to exclude metals in
this initial attempt at characterizing snow clouds. For
simplicity, then, we have constructed clouds of zero metallicity
and with a hydrogen to helium ratio of 3:1 by mass (i.e., similar
to the observed cosmic helium abundance; e.g., Nieva &
Przybilla 2012). (In Section 5.2 we consider how the inclusion
of metals might affect snow-cloud models.) We further assume
that all of the hydrogen is in molecular form; this is expected
for long-lived clouds, as three-body reactions are efficient at
converting H to H2 when the gas density is high (Palla et al.
1983). Finally, we consider only the most abundant isotopes of
hydrogen and helium, so no D, T, or 3 He. Other compositions

Figure 1. The saturation curve of H2, as given by Equation (5) with
b/k=91.5 K, is shown by the solid black line for temperatures up to the
critical point, Tcrit;32.9 K. Values of Psat taken from the literature are shown
with red dots. For temperatures up to the triple point, approximately 13.8 K,
these are the recommended values from the survey of Roder et al. (1973).
Above the triple point, the data are from Leachman et al. (2009). The triple
point and critical point are both marked with blue dots. Equation (5) is a good
approximation below the triple point, but becomes poorer as the temperature
increases from there; at the critical point, our model overpredicts Psat by a
factor of 2.3.

2
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would be worth studying in future, but for this initial
investigation there is plenty to explore without adding further
complexity.

At the low temperatures of interest here, we need to specify
the proportions of ortho-H2 (J=1, 3, 5...) and para-H2 (J=0,
2, 4...). On short timescales, these sequences behave as if they
were distinct species, because they are exclusively associated
with the nuclear spin triplet and singlet states, respectively, of
the H2 molecule, and the rate at which nuclear spins are flipped
is expected to be very low (Freiman & Crespo 2017). Below
the critical point (Tcrit;32.9 K, Leachman et al. 2009), where
H2 may condense into liquid form, the ortho/para ratio in
thermal equilibrium is below 5%. And below the triple point
(Ttrip;13.8 K, Leachman et al. 2009), where solid H2 may
precipitate, it is more than a thousand times smaller again. We
therefore proceed by neglecting the ortho-H2 content.

The reason that para-H2 tends to dominate at low
temperatures is simply that the J=1 state lies roughly 170 K
above the rotational ground state (J=0). As the energies of
the excited states are proportional to J(J+1), it is clear that the
population of the J=2 level, at approximately 510 K above
ground, will be very small indeed. The excited rotational levels
play a key role in radiative cooling, so in Section 4 we will
quantify their population. But for now it suffices to make the
approximation that all H2 molecules are in the rotational
ground state. That approximation effects two important
simplifications. First it means that the H2 phase boundary
corresponds uniquely to that of pure para-H2. Second, the H2

can be modeled as effectively monatomic, with only transla-
tional degrees of freedom contributing to the internal energy.

2.3. Convection

It is not possible to have a static model in which H2

condensates are present. The reason is that the density of the
solid is much higher than that of the gas, so it would precipitate
out. A rough estimate of the precipitation timescale can be
made for spherical particles of radius a, located at a radial
distance r from the center of a cloud: in units of the dynamical
timescale, it is h~ r a( ) , where η is the ratio of the solid
density to that of the background fluid. (Dendritic snowflakes
of the same mass would settle more slowly, because of their
larger cross-section.) Anticipating the results we will present in
Section 3, we find that at the base of the envelope of the cloud
the precipitation timescale for micron-sized snowflakes is
3×106 yr for all of our models.

Precipitation creates a composition gradient in the fluid,
making it more helium rich in the outer regions. While the fluid
remains both saturated and static, there is no limit to this
process. Thus precipitation continues until buoyancy instability
sets in, and the resultant mixing counters the growth of the
composition gradient. We use the term “convection” to
describe this buoyant overturn, but we caution that the
character of this convection differs greatly from the more
familiar case of convection in a fluid of uniform composition.
We return to this issue when we consider the thermal properties
of our models in Section 4. Appendix A presents criteria for
buoyancy instability in the presence of a composition gradient.

We note that for a fluid at the thermodynamic critical point,
the density contrast between gas and liquid phases vanishes
(see Appendix B). Therefore precipitation near the critical point
is relatively slow, and convection can only be driven relatively

weakly. The density contrast between condensed and gaseous
phases increases monotonically as the temperature decreases.
In each of our model clouds, the core is too warm to support

H2 phase equilibrium. But it may convect, depending on the
temperature gradient (Equation (25)) that would be needed for
radiative transport of heat therein. Radiative cooling of
condensate-free gas is predominantly via the narrow

m= S J0 2 0, 28 m0 ( ) ( ) (pure-rotation) line of H2. Because
of the high densities and low temperatures, the line is heavily
optically thick (see Figure 12), and heat flow takes place
predominantly in the wings of the line. For similar circum-
stances, it was shown by Clarke & Pringle (1997) that
convection is expected if the gas is heated primarily by cosmic
rays—as is the case in our models (see Section 4.3). However,
our models differ from those of Clarke & Pringle (1997) in that
(i) our clouds contain no metals, so there is no cooling by metal
lines, and (ii) our models have such large central column
densities that the specific heating rate is non-uniform.
Consequently convection is not guaranteed. In this initial
exploration of snow-cloud properties, we assume, for the sake
of simplicity, that the warm core is indeed convectively
unstable.

2.4. Ideal Gas Approximation

It appears that helium does not alloy with solid
H2(Leventhal & Mills 1991; Safa & Pfenniger 2008), so we
assume that all helium is in gas phase. For both helium and gas-
phase H2, we use the ideal gas descriptions of pressure and
entropy. This approximation is a natural one for helium at the
temperatures and pressures encountered in our models, which
are far from He condensation. But for H2 we are specifically
interested in describing its change of phase and one might
expect the ideal gas model to be inadequate. Indeed it is a very
poor approximation for H2 near the critical point, where
isotherms deviate strongly from PV=constant. But at lower
temperatures and pressures, the gaseous H2 adheres closely to
perfect gas behavior right up to the point of saturation. In
particular, in the vicinity of the sublimation curve ideal gas
pressure and entropy are very good approximations for the
gaseous components of the fluid (see Appendix B).
For N gas atoms/molecules, each of mass μ, in volume V,

the pressure of an ideal gas is

=P
N

V
kT. 3( )

We are approximating the H2 molecules as effectively
monatomic (Section 2.2)—meaning that the internal degrees
of freedom (rotation and vibration) are not excited. In this case
the entropy, S, is given by the Sackur–Tetrode formula:

pm
= +

S

Nk

V

N

kT

h

5

2
log

2
, 4e 2

3 2

( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

where h is Planck’s constant. The effect of phase equilibrium,
where manifest, is then to introduce an additional constraint—
the partial pressure of H2 must equal the saturated vapor
pressure (Section 2.5)—and an additional freedom: the number
of gas-phase molecules is not fixed.
We can gauge the accuracy of our approximations in a

couple of ways: first by reference to the vanderWaals
equation of state for H2(Johnston 2014), which provides a
simple model for non-ideality, and second by reference to the

3
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measured properties of H2 gas near the saturation curve (Roder
et al. 1973; Leachman et al. 2009). Those comparisons are
presented in Appendix B; here we simply note that our
approximations are good at temperatures below the triple point,
but they worsen as the temperature is increased past that point
and are very poor in the immediate vicinity of the critical point.

2.5. Envelope Phase Equilibrium

In the envelope of each cloud, we assume phase equilibrium
(i.e., that the partial pressure of H2 is equal to the saturated
vapor pressure, Psat(T), at temperature T). The assumption of
phase equilibrium is motivated by the idea that snowflakes are
present in convective cells throughout the envelope, with
snowflake mass growing in upwellings and shrinking in
downdrafts. Furthermore, snowflakes are not perfectly coupled
to the gas, and to some extent must be dispersed into adjacent
cells by the complicated fluid motions that convection gives
rise to. In this circumstance, nucleation is unlikely to be an
issue and condensation/sublimation should accurately reflect
the thermodynamic potentials.

In Appendix B we present laboratory data which demon-
strate that, except in the vicinity of the critical point, the
volume and entropy of the condensed phase are both small in
comparison with those of the gas phase. In order to develop an
analytic description of the equation of state, we henceforth
neglect the volume and entropy of the condensed phase. The
Clausius–Clapeyron equation for the phase boundary then tells
us that the saturated vapor pressure is

pm
= -P kT

kT

h

b

kT

2
exp , 5sat

3 2

3

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

where b is the latent heat of sublimation, which we
approximate as a constant. Equation (5) differs slightly from
the saturation pressure given by E. S.Phinney (1985, private
communication), who accounted for the small heat capacity of
the solid. In this paper we adopt b/k=91.5 K, and
Equation (5) then describes the saturated vapor pressure of
para-H2 to within a few percent at temperatures up to the triple
point. Above the triple point, our approximation progressively
worsens, overpredicting Psat by a factor of 2.3 at the critical
point.

Although that error of approximation is large, it should be
seen in the context of the huge range in Psat that must be
described—as evident in Figure 1. Moreover, other aspects of
our microscopic description are inaccurate in the vicinity of the
critical point (see Section 2.4 and Appendix B). The poor
performance of our Psat approximation in that region adds
emphasis to the point, already made, that our models are only
sketches in cases where the liquid condensate is present, and
increasingly rough sketches as the envelope temperature
approaches the critical point.

2.6. Equations of State

We assume slow convective turnover (i.e., fluid speeds that
are small compared to the sound speed), so that hydrostatic
equilibrium remains a good approximation. Slow turnover is
expected if the fluid is everywhere only marginally buoyantly
unstable. The timescale for radiative cooling is expected to be
orders of magnitude longer than the dynamical timescale
(Section 4), and we therefore approximate the fluid motions as

adiabatic. Marginal buoyancy instability then implies that the
compressibility is given by

r r r
= =

¶
¶

d

d P

d d r

d P d r P

log

log

log log

log log

log
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, 6

S

( )
⎛
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⎞
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everywhere in the cloud.
The total entropy of a fluid parcel can be written as the sum

of two terms of the form given in Equation (4): one for helium
and one for hydrogen. If the number of gas-phase molecules is
fixed, then the differential of Equation (4) is just

r= -dS Nk d P d
3

2
log

5

2
log , 7{ } ( )

so that

r¶
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log
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5
, 8
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( )
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⎞
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which is the familiar form for the adiabatic trajectory of an
ideal gas. Equation (8) is the equation of state in the core of
each cloud.
In phase equilibrium, however, the number of gas-phase

molecules varies so as to maintain the partial pressure of H2 at
its saturated level. With that constraint, expressed in the form
of Equation (5), we can rewrite the Sackur–Tetrode entropy for
the saturated hydrogen vapor as Ssat=Nkψ, with

y º +
b

kT

5

2
. 9( )

At a fixed value of the total entropy (hydrogen plus helium),
the adiabatic compressibility is thus

r y
y

¶
¶
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- + +
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2 1 3 1
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2

2
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where y is the ratio of the partial pressure of helium to that of
hydrogen. Equation (10) is the equation of state in the envelope
of each cloud.
As expected, Equation (10) reduces to Equation (8) in the

limit  ¥y , where there is so little hydrogen that the
thermodynamics of the H2 phase change become irrelevant. On
the other hand, for modest helium concentrations, the phase
change plays a dominant role at low temperatures, where
ψ?1, and the compressibility (10) approaches unity. Thus
the fluid is much softer (i.e., more compressible), under
adiabatic conditions, as a result of the phase transition. The
reason for this is that, under conditions of phase equilibrium, a
lot of the work done during an adiabatic compression goes into
liberating a small number of molecules from the condensed
phase—an energy b?kT is required to liberate each molecule
from the condensate. Consequently, the fluid temperature rises
only slightly on compression, and the pressure response is
therefore smaller than for condensate-free gas.3

3 Füglistaler & Pfenniger (2015) suggested that the adiabatic sound speed of
H2 in phase equilibrium is zero, corresponding to infinite adiabatic
compressibility. Their result was obtained by scaling the isothermal sound
speed, which is zero in phase equilibrium, by the ratio of specific heats, CP/CV,
which they assumed to be finite. However, at constant pressure the fluid
releases/absorbs heat without any change in temperature, in response to
condensation/sublimation of the solid. Consequently CP is infinite, whereas CV
is not, so the method of sound-speed calculation suggested by Füglistaler &
Pfenniger (2015) does not yield a well-defined result.
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In the core of the cloud, convection keeps the fluid well-
mixed and the composition is expected to be uniform. By
contrast, the composition of fluid in the envelope must change
with radius because snowfall denudes the outer layers of
hydrogen. Thus, although the compressibility is everywhere
equal to the locally adiabatic value—as per Equation (10)—a
different adiabat applies at each radius. We therefore need to
explicitly consider the composition gradient in order to
determine the temperature and helium abundance profiles in
the envelope.

2.7. Envelope Temperature and Helium Profile

Ideally a structural model would be built on a microphysical
description of how hydrogen snow grows and settles under the
combined influence of gravity and convective fluid motions.
That, however, is much more detailed than we attempt in this
initial sketch of snow-cloud properties. Instead we simply
assume that condensate makes a negligible contribution to the
fluid density at every point in the cloud. This assumption is
motivated partly by simplicity, and partly by the idea that
snowflakes settle out rapidly (Section 2.3). For it to be a good
approximation, we require that the downward drift speed of the
snowflakes be comparable to, or greater than, the speeds
achieved by convecting fluid parcels.

It is unclear whether that condition should be expected to be
met in practice, as the speed at which snowflakes settle out
depends on their size—which is unknown—and the convection
speeds are also unknown. As a fiducial, we give the settling
speed for micron-sized snowflakes at the base of the envelope
of a model that we will illustrate later (Figure 3): it is 2×10−4

times the sound speed in the gas.
Given the assumption of rapid precipitation, the pressure and

density of the envelope fluid are fully specified by its
temperature and helium content, y: we have P=Psat(1+y)
and ρ=μPsat(1+2y)/kT. Alternatively, one can think of T
and y as being uniquely determined by P and ρ, and in practice
that is how we proceed when constructing numerical solutions.
As we step out in radius, the gas pressure declines—in a
manner quantified in the next section—and the density of the
gas declines in accord with the local adiabatic compressibility
(i.e., given by Equation (10)). By differentiating our expres-
sions for P and ρ, just given, we then obtain the gradients in
temperature and helium content:

y
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Together with Equations (6) and (10), these results specify
conditions in the envelope of the cloud.

2.8. Boundary Conditions

The very center of the cloud—where r̃=1 and
m=z=q=0—cannot be used as the inner boundary of
the numerical integration, because dz/dq is infinite at that
point. Instead we use the limiting behavior of Equation (2) at

small q, for the equation of state (8), which is

r  -  -m z q z z
1

3
,

1

2
, 1

3

10
, 133 2 2˜ ( )

and we start the integration at a small but non-zero value of q.
In our numerical work, the inner boundary was set at
q=−5×10−7 (z=10−3).
Using the boundary conditions just given, one can solve the

equations of hydrostatic equilibrium as a set of coupled
differential Equation (2), together with the equation of state (8),
using q as the independent variable and integrating out to the
core-envelope boundary, where q=qe (see Section 3.2). From
that point one continues the integration, but with the equation
of state (10), integrating out to a predetermined, large, negative
value of q that in effect defines the surface of the cloud.
Our outer boundary condition neglects the ambient pressure

of the external medium. An alternative procedure would be to
choose a value for the external pressure—e.g., the typical
pressure of the diffuse ISM in the solar neighborhood, if we are
interested in clouds in the Galactic disk—and use the
corresponding value of q as the surface boundary condition.
Clearly, no single procedure yields models that are appropriate
to all environments. Appendix D illustrates how our models
would be truncated by an external pressure equal to that of the
local, diffuse ISM. The influence of a non-zero external
pressure is greatest for high-mass clouds with low central
temperatures.
We obtained our solutions using the routine NDSolve in the

Mathematica software package,4 following each structure out
to a minimum pressure corresponding to q=−100. Results
are presented in Section 3.

3. Hydrostatic Models of Snow Clouds

With the ingredients given in Section 2, we can proceed to
construct hydrostatic equilibria appropriate to the conditions of
interest. All of our solutions exhibit two zones: a warm, dense
core that does not support condensates and a colder envelope
where H2 phase equilibrium obtains. Although the solution for
the warm core will be familiar to most readers, it is helpful to
briefly review the result before proceeding to the solution for
the cloud as a whole.

3.1. Solution for the Warm Core

In the case of a fluid that is free of condensates, we use
Equation (8) to describe the run of density as a function of
pressure in the cloud. This corresponds to the familiar case of a
polytrope, with polytropic index n=3/2, resulting in the
structure shown in Figure 2. The radial profiles of density and
pressure can be derived from the temperature profile simply by
forming the 3/2 and 5/2 power, respectively, of T/Tc.
The profiles shown in Figure 2 provide a complete structural

solution for cases where the same polytropic equation of state
applies throughout, such as the case of a low-mass star that is
fully convective (e.g., Kippenhahn & Weigert 1994). In this
paper we are concerned with cold gas clouds, and starting from
modest central temperatures, it is clear that the adiabat will
soon cross the H2 sublimation curve (Figure 1). Thereafter we
need to employ the equation of state (10) rather than
Equation (8).

4 www.wolfram.com
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3.2. Solutions for Core-plus-envelope

Once conditions at the center of the cloud are fully specified
(e.g., temperature, pressure, and helium abundance), Figure 2
provides the unique solution out as far as the core-envelope
boundary. Equation (5) gives the saturation pressure as a
simple function of temperature, but there is no simple inverse-
function for determining temperature from pressure. We have
therefore found it convenient to specify our models using the
parameter combination {yc, Tc, Te} (i.e., the central helium
abundance, the central temperature, and the temperature at the
base of the envelope). Together these parameters suffice to
uniquely determine conditions in the core, via
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for the central density.
Because the core obeys a polytropic equation of state, the

value of the independent variable at the core-envelope

boundary is just given by
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and integration over q is performed separately for the ranges
0>q�qe and qe>q�−100.
As H2 condensation can only be achieved below the critical

temperature, the temperature at the base of the envelope must
be Te�Tcrit;32.9 K. We will see in Section 4 that thermal
equilibrium solutions can only be obtained if there is net
radiative cooling for the envelope, taken in isolation. In turn,
that requires Te>Tcmb;2.73 K (the temperature of the
CMB), so acceptable values for the temperature at the base
of the envelope are restricted to Tcmb<Te�Tcrit.
The central temperature must be at least as large as Te.

However, at high central temperatures the approximations we
are using break down: the ortho-H2 fraction becomes
significant, thus affecting the saturation pressure, and the
excitation of rotations modifies the heat capacity of the gas, so
Equation (8) no longer represents the equation of state in the
core. We have therefore limited our exploration to central
temperatures: Te<Tc�100 K.
The interesting range of central helium abundance can be

anticipated from the following considerations. First, the
envelope is always more helium rich than the core, because y
monotonically increases outward, starting from a value of yc at
the base of the envelope. Second, the average helium
abundance for the cloud must be á ñ =y 1 6 in order to yield
the correct composition for the cloud as a whole (Section 2.2).
Thus we have 0�yc<1/6.
There is, however, no way of anticipating exactly what value

of yc will yield the correct average composition for a given {Tc,
Te} pair. Thus for each combination of temperatures, we must
construct models for various values of yc, yielding the function
á ñy yc( ), and then determine the particular value of central
abundance that yields the correct average composition. We will
see later that if Te=Tc, then the envelope makes only a small
contribution to the cloud mass and the appropriate yc is only
slightly less than 1/6.
Conversely if the ratio Te/Tc is not small, then the envelope

can make a large, even dominant contribution to the mass. In
that case it can be impossible to construct acceptable models,
because even setting yc=0 yields overall too much helium
relative to hydrogen. In practice, then, our models do not
extend down to central temperatures as low as Te. We
emphasize, though, that this difficulty is found specifically
for the numerical solutions we have constructed, and that those
solutions rest on the assumption of negligible condensed
fraction in the envelope. If one were to relax that assumption,
then it might be possible to construct acceptable models with
smaller or even nonexistent cores—that is, with phase
equilibrium holding throughout the cloud.

3.2.1. Amount of Condensate

Consider a single convection cell in which fluid is
circulating. On the upward expansion phase of the cycle,
condensation occurs as the gas cools, and sublimation occurs
on the downward, compressive phase of the cycle. The change
in the number of gas-phase molecules, Nm, can be determined

Figure 2. Radial profiles for the temperature (upper panel; in units of the
central temperature, Tc), and the scaled mass (lower panel) for an n=3/2
polytrope. The scalings for mass and radius are given in Section 2.1. Readers
familiar with polytropic models should note that the radial scaling used here
makes no reference to the equation of state, so that the surface occurs at
z;5.78, a factor of +n 1 1.58 larger than the value usually quoted for
this polytrope. The total mass is ;10.7. With suitable choices for the central
temperature, density, and pressure, the profiles shown here provide the solution
for the warm core of each model cloud.
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from the adiabatic trajectory (Section 2.6) to be
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Starting from a condition in which no condensate is present, at
the bottom of a convective cell, Equation (17) tells us what
fraction of the hydrogen has turned into snowflakes by the time
the fluid parcel has risen one pressure scale-height, i.e.,
1−exp(δlog Nm), with
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To calculate the total precipitate content, we must average over
all phases of the convective cycle, implying that the fraction of
H2 in the form of precipitates is d- N1 exp log 2m{ ( )} , with
d Nlog m as given by Equations (17) and (18) The result for one
particular cloud is shown in panel (c) of Figure 3. There we can
see that the contribution of snowflakes to the total density is
everywhere very small (1%)—as we assumed in Section 2.7
—so our model is self-consistent in this respect.

3.2.2. Solution for a 10−4 Me Cloud

The character of the structural solutions we obtain is
illustrated by the example shown in Figure 3, which is one
possible structure for a cloud of mass 10−4Me. Other

structures are possible for a cloud of this mass, as we will
see in Section 3.3. The low-density envelope, with its soft
equation of state, occupies almost the entire volume of this
cloud, but hardly contributes at all to the mass. Moving
outward through the envelope the helium fraction increases, as
is evident from the decline of the partial pressure of H2 relative
to the total, and the surface of the cloud is effectively pure
helium.
The kink seen in the temperature profile at r;0.4 au in the

top panel of Figure 3 is expected: it is just the core-envelope
boundary, and it reflects the change in equation of state at that
boundary. There is, however, another bend in the temperature
profile at r;2.4 au, which we have not yet explained. This
bend is also, in effect, a change in the equation of state, but not
a discontinuous one. It arises because the hydrogen fraction
becomes so small that H2 condensation no longer plays a
dominant role in the thermodynamics. Consequently the
equation of state rolls smoothly over into the usual adiabatic
relation given in Equation (8), as helium becomes increasingly
dominant. The harder equation of state at the surface results in
an abrupt edge to the cloud.
Although the core of our model cloud is precisely an n=3/2

polytrope, Figure 3 is a graphic demonstration of the inadequacy
of that polytropic solution for describing the cloud as a whole.

3.3. Masses and Radii of Hydrostatic Equilibria

By constructing hydrostatic equilibrium models for each
allowed parameter combination, in the manner described

Figure 3. Example of the internal structure of a model snow cloud. Here we show radial profiles for (a) temperature, (b) pressure, (c) density, and (d) enclosed mass,
inside a cloud of mass 10−4 Me (25% of which is helium), and radius approximately 3.3 au. This model was generated by the parameter combination {Tc=27 K,
Te;4.5915 K, yc;0.16126}. Interior to r;0.4 au the solution has the same form as that shown in Figure 2. In panel (b), the solid line shows the total pressure, and
the dashed line shows the partial pressure of H2. In panel (c), the solid line shows the total density, the dashed line shows the total density of H2, and the dotted line
shows the density contributed by H2 snowflakes.
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previously, we obtain the loci of acceptable solutions in the
mass–radius plane. The result is shown in Figure 4 for a grid of
models in which Te(K) takes on integer values in the range
3�Te(K)�33, and Tc varies from 100 K down to 30 K in
steps of 10 K. The lower end of the range of Tc for this grid of
models is only a few degrees above the limit at which we can
still obtain solutions with the correct helium abundance (see
Section 3.3.1).

All the solutions shown in Figure 4 fall in a narrow band of
the mass–radius plane, with radii R within a factor of a few
either side of the relation M(Me)=2×10−4R(au) . This band
can be understood in the following terms. First, the range of Tc
covered by this grid of models is only a factor of ;3, and the
M∝R relation just given reflects this narrow range in Tc.
Second, although the range of Te which we explore is also
modest (only a factor ∼10), that range corresponds to 15 orders
of magnitude variation in density at the core-envelope
boundary, because Psat is a steep function of T (see
Equation (5) and Figure 1). And the central pressure follows
Psat(Te) via Equation (14). Consequently, the large range of
masses and radii seen in our models is primarily attributable to
the range in Te. Furthermore, we can see that almost all of the
spread in masses and radii is due to envelope temperatures
below the triple point (i.e., the variety is almost all associated
with the solid form of the condensate). Clouds that exhibit both
rain and snow are exclusively found at the very-low-mass (and
radius) end of the spectrum.

We note that in the limit T T 0e c our solutions approach
the usual n=3/2 polytropic models, as the envelope shrinks
to occupy a minuscule fraction of the cloud radius. In this limit
the masses and radii of our models are just those given in
Section 3.1—namely, R;5.78 ro and M;10.7Mo. And the

scaling of mass with radius, as Tc is varied at fixed Te, is
determined entirely by the variation of Mo and ro with Tc. From
the definitions of Mo and ro given in Section 2.1, it is
straightforward to show that ro∝ -Tc

1 4 and µM To c
3 4, when

Te is held constant. Thus the loci Te=const. of our model
clouds obey M∝R−3, for large Tc, as can be verified from
Figure 4.

3.3.1. Solutions with Large Radii

The grid of models shown in Figure 4 is bounded by four
conditions: 33 K�Te>Tcmb, and 100 K�Tc�30 K. The
last of these is somewhat arbitrary. Moreover, as the central
temperature is lowered, the H2 phase change plays an
increasingly important role in the sense that the envelope
becomes more extended. We have therefore explored to lower
central temperatures, corresponding to larger cloud radii.
To do so required some care because, at a fixed value of Te,

as Tc is lowered the cloud radius becomes very sensitive to the
precise value of the central temperature. To deal with this
sensitivity, we took the following approach. We first fixed Te
and evaluated structures with large Tc. From those solutions we
determined the numerical derivative of the cloud radius, R, with
respect to Tc, and we used that derivative to estimate the value
of Tc that would increase R by 10%, relative to the current
model. Proceeding in this way, we were able to trace sequences
of models out to very large radii, at fixed Te. The results are
presented in Figure 5, where we can see additional solutions
(i.e., not present in Figure 4), at large radii, corresponding to
23Tc(K)<30.

Figure 4. Masses and radii for the hydrostatic equilibria described in
Section 3.3, having an average helium abundance á ñ =y 1 6. Each point
represents a valid model on a grid of {Te, Tc} with Te(K)=3, 4, 5, ... 31, 32,
33, and Tc(K)=30, 40, 50, ... 90, 100. (But note Te<Tc.) Blue points are
pure snow clouds, with Te<13.8 K; red points correspond to Te�14 K. For
low envelope temperatures, the loci Te=const. are labeled. Also shown, with
a solid line, is the case Te=Tcmb=2.73 K. For each sequence of points with
Te=const., Tc increases as radius decreases.

Figure 5. Masses and radii for the hydrostatic equilibria described in
Section 3.3.1, having an average helium abundance á ñ =y 1 6. Each point
represents a valid model on a grid of {Te, Tc} with 2.73�Te�33 K, and
Tc�100. Note that this plot extends to much larger radii than Figure 4; the
bigger clouds reflect valid solutions with central temperatures in the range
23Tc(K)<30. At any given mass, no solution with the correct á ñy can be
obtained for radii greater than the largest models shown here. At the dashed
(solid) red line, the structures would be crushed by approximately 10% (50%)
in radius by the pressure of the diffuse ISM (3000 K cm−3).
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Two caveats apply to the solutions with very large radii.
First, the largest solutions at a given mass are very sensitive to
Tc, with a 10% change in radius being produced by temperature
changes as small as 60 μK in the most extreme cases (i.e.,
where both Tc and Te are near the lower end of their respective
ranges). We therefore expect that these structures might look
quite different—indeed valid hydrostatic solutions might not
even exist—if we were to modify the slightest detail of our
physical model. In other words, the largest models are unlikely
to be robust to small changes in the physics and should not be
taken too seriously. Second, over a large fraction of their radial
extent, the largest structures exhibit pressures that are below the
typical pressure of the diffuse interstellar medium. Such
structures would therefore be crushed by the diffuse ISM,
and those models cannot be representative of any real entity in
the disk of our own Galaxy.5 The extent to which the ambient
pressure affects the structure of the outer layers can be gauged
from the profiles presented in Appendix D.

3.4. Central Helium Abundances

Readers might be curious about the central helium
abundances that are required to obtain solutions with the
correct mean abundance. Figure 6 shows contours of constant
yc in the mass–radius plane. As expected, for very large values
of Tc/Te, where the core constitutes almost the whole cloud, we
see that á ñy yc  . But the envelope is more helium rich than the
core, so every model has < á ñ =y y 1 6c , and yc decreases as
cloud radius increases at fixed cloud mass, reflecting the larger
contribution of the envelope to the total cloud mass.

A feature of Figure 6 that is initially surprising is that yc
typically does not extend down to very low values at the largest
cloud radii, for any given mass. The explanation for this lies in

the fact that yc influences á ñy both directly, through the core
helium abundance, and indirectly, via the properties of the
envelope. The direct influence dominates for large Tc/Te. But
for lower central temperatures, where the envelope becomes
very large compared to the core, the indirect influence also
plays an important role. What happens as the base of the
envelope becomes more hydrogen rich (i.e., yc decreases) is
that the thermodynamics of the H2 phase change become more
important in determining the adiabatic trajectory, leading to an
increase in the envelope mass as yc decreases (at fixed Tc, Te).
This provides a countervailing trend ,which tends to increase
á ñy as yc decreases. Consequently, for low values of Te there are
no solutions with á ñ =y 1 6 for yc=1/6.
The effect just described becomes less important for large

values of Te. The reason is that the entropy of the saturated
vapor is smaller at higher temperatures (Equation (9)), so that
the H2 phase change has a smaller influence on the adiabat
(Equation (10)). In turn, this permits valid solutions right down
to yc=0 for very-low-mass clouds.

4. Thermal Properties of the Hydrostatic Models

The solutions presented in Section 3 are dynamical equili-
bria, and therefore they do not evolve on the dynamical (sound-
crossing) timescale. However, the equations that we solved to
obtain those structures do not include an energy equation, so
the hydrostatic equilibria are not necessarily thermal equilibria
and are therefore only quasi-static. Specifically, if we consider
a sequence of hydrostatic models of fixed mass, we find that
they differ slightly in binding energy—becoming more tightly
bound as the central temperature increases—and therefore a
given cloud will slowly evolve along that sequence if there is
an imbalance between the rates of heating and radiative
cooling. If heating exceeds cooling, then the progression will
be an expansion, as the excess energy goes into work done
against gravity.
The primary issue that is addressed in this section is the

global thermal balance of our models, and here we narrow our
focus to the case of clouds located in the Galaxy, for which
cosmic rays are expected to dominate the heat input. We
therefore assess the radiative output (Section 4.2), and the heat
input (Section 4.3), and then we identify thermal equilibrium
models by requiring Heating=Cooling (Section 4.4).
Of course a time-independent model must be locally in

equilibrium, as well as globally, and in Section 4.1 we consider
the flow of heat internal to each cloud.

4.1. Internal Heat Flow

As mentioned in the introduction, convective heat flow
within the models we have constructed is highly unusual, in
that heat flows inward throughout the envelope of each cloud.
If it is not already obvious that this behavior is unusual, one
need only consider that the temperature of the fluid increases
inward, and remember that the second law of thermodynamics
forbids natural heat flow from a cooler body to a hotter body.
The resolution of this apparent paradox is explained carefully
in Appendix A; here we summarize the key points.
The first point is that the fluid is moving, radially, as a result

of a buoyancy instability, and it is these fluid motions that
provide the main channel for energy transport throughout the
cloud. A fluid element undergoes compression (expansion), as
it moves to regions of greater (lesser) pressure, and the work

Figure 6. Contours of constant central helium abundance, yc, for the grid of
models shown in Figure 5. For yc�0.16, contours are plotted at intervals of
0.01 in yc and are shown with solid lines. For yc>0.16, contours are plotted at
intervals of 0.001 and are shown with dashed lines.

5 The largest models are more relevant to the intergalactic context, where the
ambient pressure is orders of magnitude smaller.
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done on (by) the moving fluid parcel results in a change in
temperature prior to the exchange of any heat with the
background fluid. So to establish the direction of heat flow—
into or out of a displaced fluid parcel—we must determine the
temperature of the fluid element after it has been displaced and
compare that to the temperature of the background fluid at the
new location of the displaced parcel. For small radial
displacements this is equivalent to comparing the temperature
gradient of the background fluid with that of an adiabatic
trajectory. Slow, adiabatic displacements conserve entropy, so
this comparison amounts to a determination of the sign of the
radial gradient of the specific entropy: heat will flow from the
higher entropy regions to the lower entropy regions.

Figure 7 shows the radial profile of the specific entropy for
the same snow-cloud model shown in Figure 3. We see that
entropy is constant in the cloud core. That is as expected,
because the equation of state utilized in the core (i.e.,
Equation (8)) corresponds to an isentrope. If there were no
entropy gradient, then convection would result in no heat flow.
However, in reality the core can be only approximately
isentropic: as shown in Appendix A, if a fluid has uniform
composition, then buoyancy instability is only present for
configurations where the entropy increases with pressure. In
turn, that means that convective motions in the cloud core are
associated with outward transport of heat.

In the envelope, however, we see that the entropy increases
outward, and consequently any fluid circulation must convect
heat inward. This remarkable result is entirely due to the
changing composition of the fluid with radius, which permits
buoyancy instability to exist despite the stabilizing effect of the
inverted entropy gradient. We remind readers that the
hydrostatic equilibrium shown in Figure 3—and indeed each
of our hydrostatic models—is, by construction, precisely
neutrally buoyant in respect of adiabatic displacements at any
location.

In the outermost regions of the envelope, the entropy again
appears to level off to a constant value. That is because the fluid
is almost pure helium in that region. The entropy there is, in
fact, not quite constant, but increases slightly with radius as
there is a small amount of H2, and the H2 fraction decreases

outward. Thus convection leads to inward heat flow throughout
the envelope of the cloud. That conclusion is important because
the outer regions of the cloud are colder than the CMB and
must thus experience net radiative heating. Inward convection
of heat nevertheless permits these regions to exist in steady
state.
A key point to note is that heat can be convected inward only

as far as the boundary of the core, so the base of the envelope
must be able to radiate away the heat (from the CMB and other
sources) that is deposited throughout the cold, outer layers. In
turn, that means that the base of the envelope must be warmer
than the CMB—a condition that we have already imposed on
our solutions in Section 3.
The foregoing considerations tell us the direction of the

convective heat flow—outward in the core, and inward in the
envelope—but not its magnitude. Convection can be a very
efficient means of transporting heat; however, in the limit of
vanishing turnover speed, the heat flux also vanishes. Thus the
strength of the convection can adjust itself so as to bring about
quasi-steady conditions, and we assume that it does so. With
this assumption it is not necessary to explicitly solve for local
thermal balance.
Radiative heat exchange between different elements within

the cloud is insignificant by comparison with convection. But
radiation is important because it is the only means by which the
cloud as a whole can cool. We now evaluate the radiative
losses.

4.2. Radiative Cooling

We identify two sources of thermal radiation that we expect
to be important in the present context: continuum emission
from H2 snowflakes, and S0(0) ( = J 2 0, 28 μm) pure
rotational line emission from gas-phase H2. Radiative losses
from those two processes are evaluated in this section.
A third source of thermal radiation that is potentially

important, but which we do not include, is due to neighboring
ortho-H2 pairs in solid H2(Hardy et al. 1977; Harris et al.
1977; Silvera 1980). Because of the non-zero electric
quadrupole moment of the H2 molecule, there is a quadru-
pole-quadrupole interaction energy that depends on the relative
orientation of the angular momenta of the two molecules and
their separation. Consequently, ortho-H2 pairs at substitutional
sites in a para-H2 lattice can exist in various, discrete quantum
states, and transitions between states give rise to microwave
line emission. These lines are, however, very weak transitions,
and furthermore the radiated power scales as the square of the
ortho-H2 fraction, in the case of low ortho-H2 content.
Therefore, consistent with our approximation that the clouds
are made of pure para-H2 (Section 2.2), we neglect the
radiation from ortho-pair transitions in solid H2.
It is worth noting that the radiation field from all processes

combined is very weak indeed; consequently, it has no
significant influence on the temperature and density structure
of the cloud. That structure is fully determined by the
hydrostatics (Sections 2, 3), and it is thus a straightforward
task to calculate the intensity of the radiation field that arises in
each model.

4.2.1. Pure Rotational Transitions

The main source of photons from pure rotational transitions
of H2 is the core of the cloud, where temperatures are highest.

Figure 7. Sackur–Tetrode entropy per particle of the fluid, as a function of
radius, for the same cloud model as shown in Figure 3. The outward increase in
entropy, through the envelope of the cloud (r>0.4 au), means that envelope
convection transports heat inward, up the macroscopic temperature gradient, as
discussed in Section 4.1.
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But even in the core, and at the highest temperatures we
consider (100 K), only the fundamental rotational transition
S0(0) contributes significantly. The high density and low
temperature of the gas result in a high optical depth at line
center for this transition, and an accurate formulation of the
radiation transport is needed. For the hydrostatic equilibria
constructed in Section 3, we determine the emitted intensity
along any given direction, and at any given frequency, using
the usual formulae for thermal radiation transport (e.g., Rybicki
& Lightman 1979). The power radiated in the S0(0) line follows
immediately by integration over frequency and angle. Results

are shown in Figure 8, where, as expected, we see a steep
increase in radiated power as the central temperature increases.

4.2.2. Snowflake Continuum

As with any dust particles, we expect thermal continuum
radiation to arise from the H2 snowflakes that are present in the
envelope of the cloud. However, in contrast to the silicates and
graphitic materials that are usually hypothesized to make up
astrophysical dust (e.g., Draine 2003), pure, solid para-H2

absorbs very weakly at low frequencies and is therefore a very
poor emitter. To model the emissivity of the snowflakes, we
treat them as if they were small, dielectric spheroids. In this
approximation, the size and shape of the individual snowflakes
is of no consequence, and the total radiated power depends
only on the total mass in snow, its temperature, and the
imaginary part of the low-frequency dielectric constant—as
described by Draine & Lee (1984), whose treatment we follow.
In the case of pure para-H2 at long wavelengths (λ?28 μm)
the imaginary part of the dielectric constant is approximately
10−11/λ (cm) (Kettwich et al. 2015). In keeping with our
approach to the hydrostatic modeling, where solid and liquid
condensates are treated on a common footing, we evaluate
thermal radiation from liquid H2 as if it were from the same
mass of solid H2.
Because pure para-H2 snowflakes are only weakly absorb-

ing, the optical depth of our model clouds to the thermal
snowflake continuum is very small, and radiation transport is
therefore trivial. Figure 8 shows the total power radiated by
snowflakes. Unlike the contribution from rotational transitions,
we see that the snowflake power decreases as the central
temperature increases for all models of mass 2×10−7Me.

4.2.3. Total Cooling Rate

The total cooling, which is the sum of the radiation from the
two processes described previously, is shown in Figure 9 as
the power per unit mass, Λ. As the ordinate in the figure is the
mass of the cloud, it is straightforward to determine
the luminosity for any model of interest. For example, the
luminosity of the model shown in Figure 3 can be seen to be
∼2×1029×3×10−11=6×1018 erg s−1. This is a very
low luminosity in comparison with the Sun, for example.
Indeed all of our snow-cloud models have very low
luminosities in comparison with main-sequence stars, as can
be seen by noting that (i) Λ=Le/Me;2 erg g−1 s−1, and
(ii) M=Me. Thus it is clear that snow clouds are intrinsically
very dark—they are a type of baryonic dark matter—as was
anticipated by Pfenniger & Combes (1994).
An interesting aspect of the cooling is the power per unit

binding energy for the structure, which tells us the rate at which
contraction would occur in the absence of any heating—in
other words, the Kelvin–Helmholtz rate,KH. Now the specific
binding energies, , of our model snow clouds are all quite
similar, because there is little variation in their central
temperatures, with -log erg g 9.2 0.310

1( )  . Thus
Figure 9 is also, in effect, a contour plot of the Kelvin–
Helmholtz contraction rate. Specifically, if we add 7.3 to each
of the contour values shown in Figure 9, we would have an
approximate contour plot for -log Gyr10 KH

1( ). Thus we see
that for cloud masses 10−6Me, all but the most compact of
our models have Kelvin–Helmholtz timescales that are
comparable to or greater than the age of the universe.

Figure 8. Radiative cooling due to the = S J0 2 00 ( ) , λ=28 μm pure
rotational line of H2 (upper panel), and the continuum emission from H2

snowflakes (lower panel). In both cases, the contours show log10Λ, where Λ is
the specific luminosity in units of erg g−1 s−1, net of the power that is absorbed
from the CMB (Section 4.3.1).
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Long cooling timescales have several implications for the
models we have constructed. First, thermal equilibrium may
not actually be reached within the age of the universe, even if it
is possible in principle. Second, some pathways to thermal
equilibrium may be excluded. For example, a simple collapse
from large radii is strongly disfavored for the high-mass clouds
shown in Figure 9, because it is impossible to radiate away the
gravitational binding energy within the age of the universe. If
thermal equilibria do exist, though, they could perhaps be
reached by a brief period during which heat is injected into
clouds that are initially more compact than those equilibria.
Third, the stability of any thermal equilibria against perturba-
tions is less of a concern if the underlying Kelvin–Helmholtz
rate is very low, as instabilities should not progress very far
within the age of the universe.

4.3. Heat Sources

Various external agents may supply heat to the clouds, with
the largest contributions likely to come from far-UV starlight,
absorbed6 by H2 snowflakes; cosmic rays; and the CMB. Of
these three, the first is very sensitive to the location of the
cloud, becoming very large at small distances from massive
stars (a point that we return to in Section 5.4). However, at a
typical interstellar location in the solar neighborhood, the far-
UV energy density is only ∼1% of that in cosmic rays (e.g.,
Draine 2011). As both species are relativistic, and both transfer
their energy effectively to molecular hydrogen, this means that
heat is typically supplied predominantly by cosmic rays for
clouds in the solar neighborhood. At other locations in the
Galaxy (e.g., near star-forming regions), heating by starlight
assumes a greater importance and may become dominant. It

would be interesting to explore that regime, but it is beyond the
scope of this paper to do so; here we concentrate on the
circumstance where heating is dominated by cosmic rays and
the CMB.

4.3.1. Cosmic Microwave Background

The photons of the CMB are a universal source of heat for
snow clouds. As the CMB temperature evolves over cosmic
time, so must the heat input to any cloud, and the boundary
Te�Tcmb gradually relaxes. That, however, is beyond the
scope of this paper; we restrict attention to the present epoch.
Absorption of photons proceeds by the inverse of each of the

two emission processes discussed in Section 4.2, and it is
therefore natural to include it as a negative contribution in the
calculation of the radiated power. Indeed, the CMB has already
been accounted for in exactly that way in the results in
Figure 8, where the quantity plotted is the net power emitted
(i.e., emitted power minus power absorbed from the CMB).

4.3.2. Cosmic-ray Heating

The column-density measured to the cloud center varies
from ∼1 g cm−2 in the upper right of Figure 5 to ∼108 g cm−2

in the lower left. These columns are large enough that severe
attenuation of the cosmic-ray flux is expected as one moves
inward, and the specific heating rate due to cosmic-ray
interactions is much less than the value appropriate to diffuse
interstellar gas (e.g., Cravens & Dalgarno 1978; Webber 1998).
Our calculation therefore proceeds by determining the cosmic-
ray heating rate as a function of column-density, for a beam of
particles, and then integrating over all incident directions. The
details of this calculation are somewhat removed from the core
topics of this paper, and are therefore given in Appendix C. The
resulting cosmic-ray heating rate, Γcr, for clouds located in the
solar neighborhood, is shown in Figure 10.

Figure 9. Total radiated power, log10Λ(erg g
−1 s−1), for line and continuum

combined. Because the binding energy per unit mass is similar for all our
models, adding 7.3 to the contour values yields a rough estimate for log10 of the
Kelvin–Helmholtz rate in Gyr−1.

Figure 10. Cosmic-ray heating rate, per unit mass, Γcr, appropriate to the
Galactic cosmic-ray disk, local to the Sun, for each of our hydrostatic snow-
cloud models. Bold contours show integer values of log10Γcr(erg g

−1 s−1), as
marked; thin contours show intermediate values at increments of 0.2.

6 The energy density of starlight in the optical is much higher than in the far-
UV, but solid para-H2 is practically transparent in the optical (Kettwich et al.
2015).
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4.4. Thermal Equilibrium

Comparing Figures 9 and 10, we can immediately see that
cosmic-ray heating, as experienced by a cloud within the
cosmic-ray disk, far exceeds the cooling rate for almost all of
our hydrostatic equilibria. The two rates match only for a small
subset of cloud models at the low-mass end of the spectrum
(M2×10−7Me), and the resulting locus of thermal
equilibria is plotted as the solid line in Figure 11.

In the vicinity of these equilibria, the orientation of the
contours of Λ (Figure 9) and of Γcr (Figure 10) demonstrate
that for models of a given mass, the cooling rate is insensitive
to cloud radius, whereas the heating rate is a strong function of
cloud radius. And we note that the heating rate increases with
increasing cloud radius (at fixed mass). It follows that these
equilibria are thermally unstable: a perturbation that causes the
cloud to expand (contract) slightly will lead to heating
(cooling) outstripping cooling (heating), and thus the cloud
will expand (contract) further.

Real clouds following orbits within our Galaxy would
experience heating rates that vary with time as they pass
through different cosmic-ray environments. In particular, the
heating rate may achieve very low values if the cloud travels far
from the cosmic-ray disk. The detailed consequences of a time-
dependent heating rate are unclear, but at a simple-minded level
we can consider the effect of lowering the average heating rate
by rescaling Γcr. Therefore, in addition to the locus for Γ=Γcr,
Figure 11 also shows the loci of thermal equilibria corresp-
onding to heating rates of Γ=0.1×Γcr and Γ=0.01×Γcr.
Within the limits of the hydrostatic equilibrium models that we
have constructed (Section 3), these lower heating rates both
yield thermal equilibria across a wider range of cloud masses
than the case Γ=Γcr. In particular, the circumstance
Γ=0.01×Γcr yields thermal equilibria across almost the
entire range of masses represented in our hydrostatic models.

However, as with the case Γ=Γcr, these equilibria are
thermally unstable, and as such they are not static models.

5. Discussion

5.1. Reconciliation with McKee’s Critique

As mentioned in the introduction to this paper, McKee
(2001) used the known properties of polytropes to highlight
some potential problems in understanding molecular clouds,
which are simultaneously very cold and very dense. The
models constructed in this paper do employ a polytropic
equation of state, but only in the core of the cloud
(Appendix 3.1). In the envelope, where H2 phase equilibrium
obtains, the equation of state is not described by any polytrope,
and consequently the points made by McKee (2001) do not
necessarily apply.
A critical point of difference between the present paper and

that of McKee (2001) is that he assumed the microwave
background temperature, Tcmb, to set a floor on the temperature
throughout the cloud, whereas in our models the surface layers
of every model have much lower temperatures. For this to be
possible in a steady-state model requires internal heat flow
from the coldest regions to the warmer interior, where it can be
radiated away. Ordinarily such heat flow cannot occur, but we
have shown (Section 4.1 and Appendix A) that inward heat
flow, up the macroscopic temperature gradient, is indeed
present in our cloud models. It is a result of the composition
gradient that is created by precipitation of molecular hydrogen
condensates. Because our structures are not limited to surface
temperatures T>Tcmb, the main thrust of McKee’s (2001)
critique does not apply here.
McKee (2001) noted another potential difficulty: if the

column to the cloud center is Σ?102 g cm−2, then cosmic
rays cannot penetrate to the deep interior (see Appendix C,
Figure 17). What, then, heats the central regions of the cloud?
As most of our models have central column densities much
larger than 102 g cm−2, that is a valid question for the structures
we have presented. A key point here is that the fluid in our
models is not static, and that opens up the possibility that the
energy deposited by cosmic rays can be transported (in
chemical form) into the deep interior of the cloud, before
conversion to heat.
To be more explicit about the path we are envisaging, cosmic

rays lose energy by ionizing the gas, and some of the deposited
energy goes into dissociating H2. Hydrogen atoms then
circulate via convection before H2 reforms, releasing 4.5 eV
per molecule into the thermal pool. A rough estimate of the
residence time of the hydrogen atoms suggests that dispersal of
the chemical energy may well be important, as follows.
Cosmic-ray energy deposition rates for most of our models

are Γcr∼10−6±2 erg g−1 s−1, corresponding to dissociation
rates~ -  - -10 H s20 2

2
1 1. In steady state, molecules reform from

atoms at the same rate, and the dominant channel is the three-
body reaction 2H+H22H2, which has a rate coefficient of
approximately 2×10−31 cm6 s−1 at a temperature of 30 K
(Palla et al. 1983). The density of atoms should therefore be
∼2×105±1 cm−3. If the molecular density is ∼1012 cm−3,
then each hydrogen atom roams through the cloud for a time
∼1013±1 s before capturing another hydrogen atom. Excepting
the most massive of our models, this residence time is much
longer than the sound-crossing time for the core of the cloud
(e.g., ∼108 s for the case shown in Figure 3). Although the

Figure 11. Loci of thermal equilibria, where cosmic-ray heating balances
radiative cooling, for three circumstances: (i) clouds located in the cosmic-ray
disk (solid line), whose heating rate is Γcr (as shown in Figure 10); (ii) clouds
heated at 0.1×Γcr (dashed line); and (iii) clouds heated at 0.01×Γcr

(dotted line).
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timescale for convective circulation is not predicted by our
model, the slow rate of H2 formation suggests that hydrogen
atoms may circulate throughout the core before they combine
to form H2. As mixing occurs during convective overturn, the
ratio of hydrogen atoms to molecules should not be a strong
function of position. But the three-body reaction rate varies in
proportion to the cube of the density, and the associated heating
may thus exhibit a strong peak at the center of the cloud.

A qualitatively similar argument applies to the ionic
chemistry: species that are created by cosmic-ray interactions
at modest depths in the cloud (102 g cm−2) will subsequently
be dispersed throughout the structure, with some of the
chemical energy being released at the very center. However,
electron-ion recombinations typically convert much of that
chemical energy into radiation, which is ineffective at heating
the gas, so we expect H2 re-formation to dominate. Detailed
models of the cosmic-ray induced chemistry in our clouds
would not be easy to construct, despite their simple composi-
tion, because of the additional complexities that are introduced
by H2 condensation. We note in particular the following points:
ionization of the condensed H2 favors the production of +H6 ,
rather than +H3 (which dominates in gas-phase) (Lin et al.
2011); clusters of H2 ligands may form around any ions
(Duley 1996; Bernstein et al. 2013); electrons and ions that
encounter snowflakes will tend to stick on the surface, or in the
bulk of the snowflake (Walker 2013); and at present, the
relevant reaction rates in or on the condensed H2 are largely
unknown.

Any concerns about heat supply to the cloud core are
potentially more serious if the orbit of the cloud lies mostly
away from the cosmic-ray disk of the Galaxy. And taking the
argument a step further, one might raise the issue of
intergalactic clouds, where heat input (in any form) is very
small indeed. In this context, it is reassuring to note the
following points: (i) very little heat is required in order to
balance the very low levels of radiative cooling exhibited by
our models; (ii) the Kelvin–Helmholtz contraction timescale for
many of our computed structures exceeds the age of the
universe (Section 4.2.3), so a lack of heat input is not
necessarily a fatal problem; and, (iii) residual hydrogen in
atomic form will be gradually converted to molecular form, and
this source of heat alone may suffice to balance the radiative
cooling—for example, an atomic fraction of 0.1%, gradually
converted to H2 over an interval of 1010 yr, would yield a
specific luminosity of order 10−8 erg g−1 s−1.

Finally, if we broaden the scope of this discussion to include
the case of models that incorporate metals, then there is even
less reason to be concerned about heat supply, as discussed in
the next section.

5.2. Adding Metals to the Models

Our models are constructed from H2 and helium alone. But
that choice was motivated only by a need for simplicity, and in
the future it would be appropriate to include metals. Here we
consider how metals might change the character of the models.

We have concerned ourselves specifically with fluids that are
so cold and dense that they manifest H2 condensation, and
under these conditions almost all of the metals would also be in
the condensed phase. Indeed, for most of the metals, that would
be the case in the core of the cloud, not just the envelope, and
so we expect that the metals would manifest themselves
predominantly in a single, solid lump at the center of the cloud.

That lump would presumably contain ∼1% of the total mass of
the cloud, and would include both refractory solids and various
ices. Its gravity would have a strong influence on the pressure
and density structure of the surrounding fluid. That is
particularly true for the more massive clouds we have
considered, as the virial temperature at the surface of a metallic
core scales as M2/3. We anticipate that the deeper gravitational
potential well created by a solid metallic core might permit
valid models in which the H2 is in phase equilibrium
throughout. In turn, that would imply inward convection of
heat right up to the surface of the solid core, so that heat supply
to the center would be assured even for clouds with very high
column densities. We further note that the metals themselves
may be a significant source of heat in the form of residual
radioactivity. A rough estimate based on what is known of the
terrestrial context—where 232Th, 238U, and 40K decay chains
dominate radioactive heating at the current epoch (Araki et al.
2005; Bellini et al. 2013)—indicates that the specific heating
rate should be Γrad∼10−9 erg g−1 s−1. Returning to Figure 10,
we see that for the hydrostatic models we have constructed, this
is a low rate of heat input compared to cosmic rays in the disk
of our Galaxy. However, we anticipate that models including
metals would likely display higher column densities than their
metal-free counterparts, resulting in lower values for Γcr.
Moreover, a radioactive core would provide heat input for the
important case of intergalactic clouds, where the environmental
contribution is very small.
Thermal emission from a metallic core would contribute to

the total radiative cooling of the cloud. The contribution would
be approximately blackbody at the core temperature, but the
high density of the metallic lump means that it would have a
small surface area for emission, so it is not necessarily the
largest contribution to the luminosity. Metallic impurities
remaining in gas phase at the core-envelope boundary may be
incorporated into the H2 condensate. Because pure solid
para-H2 has very little absorption at low frequencies, it is
possible that even a small impurity content in the solid could
significantly increase the radiative efficiency of the snowflakes.
A further addition to the cloud’s total radiation will arise in the
presence of metals: line radiation from molecular species that
remain in gas phase. In low temperature molecular gas, at low
densities, species such as CO tend to dominate the radiated
power, with strong emission resulting from high abundance, a
large dipole moment, and small rotational constant. However,
for the high density gas that we are considering, such lines have
high optical depths, so strong emission is accompanied by
strong absorption, and metal lines diminish in importance
relative to continuum emission processes.

5.3. Spectral Line Structure

The S0(0) rotational transition of para-H2 is the principal
coolant for many of our models, and it offers a possible route to
discovery of H2 snow clouds, so its properties are of interest.
Total line luminosities are given in Figure 8 for all of our
models, and Figure 12 displays the line profile specific to the
model shown in Figure 3. The double-peaked structure is
characteristic of all of our models and is easy to understand.
The optical depth at line center is very high, so the intensity
there reflects the very low value of the Planck function
appropriate to the outer, colder regions of the cloud. In the
wings of the line, by contrast, we see into the deeper, warmer
regions, where the emissivity is higher.
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This line profile has been calculated in the approximation
that convection speeds are everywhere negligible compared to
thermal speeds, but that is not necessarily true and vigorous
convection could significantly alter the line profile. In that case,
we expect that the double-peaked structure would remain, but
each of the two peaks would be broadened.

Although our models have zero metallicity, similar models
that include metals will exhibit emission lines from other
molecules, and those lines might be easier to detect. For
example, the rotational lines of the CO molecule are excited at
lower temperatures than those of H2, and the molecule is polar,
so the CO line emission might be relatively strong. Any metal
lines are likely to display qualitatively similar profiles to that
shown in Figure 12, for the same reasons given previously.

5.4. Destruction of Snow Clouds

Many of our models display both high central pressures,
compared to the diffuse ISM, and “hard” surfaces (i.e., a steep
increase of density with depth), as in Figure 3. Consequently
the diffuse ISM is not expected to have much influence on their
structure—for example, a roughly 15% decrease in radius can
be expected for the cloud shown in Figure 3, under typical
conditions.7 Such a cloud could tolerate a large ambient
pressure jump (e.g., from a shock wave) without much effect
on the core, which is where most of the mass resides. These
models therefore describe well-defined entities that are
mechanically robust, and in that sense they are akin to stars
and planets. Snow clouds are, however, quite susceptible to
other destructive influences, as we now describe.

5.4.1. Thermal Disruption

The very low luminosities of our models mean that any
counterparts in the universe we inhabit would be easily
overlooked. They would also be easily “overcooked.” In other
words, it is easy to imagine conditions whereby a snow cloud

would be heated at a much greater rate than it can cool. Indeed,
we have already noted that circumstance for a large fraction of
our models in the case of heating by Galactic cosmic rays
(Section 4.4). As we have already remarked, if heating exceeds
cooling, the excess heat goes into work done against gravity as
the cloud undergoes a secular expansion. This type of thermal
imbalance is therefore disruptive if it persists, and we note that
the corresponding expansion timescale may be much shorter
than the Kelvin–Helmholtz contraction timescale if heating far
outstrips cooling (e.g., in the upper right of Figures 9 and 10).
The other main cause of thermal disruption that we can

anticipate is starlight: if a cloud happens to lie near a luminous
star, the ambient radiation field will be very strong. It is
principally the far-UV radiation that is a concern, because
much of the far-UV incident on a cloud will be absorbed. As
massive stars are both hot and luminous, any snow clouds in
the immediate vicinity of such a star will experience thermal
disruption.

5.4.2. Disruption by Physical Collisions

Snow clouds have large column densities compared to
diffuse instellar clouds; nevertheless, those columns are tiny in
comparison with stars. So although physical collisions are very
rare for stars in most Galactic environments, they could be very
important for snow clouds (Gerhard & Silk 1996;
Walker 1999). We have already noted that our model clouds
exhibit a characteristic binding energy ~ - 10 erg g9 1, so
relative speeds ~ -2 2 1 km s 1 are required to unbind the
material in the colliding clouds. Collisions at speeds 2 2
are expected to lead to merging of the two clouds.

5.4.3. Tidal Disruption

It is widely appreciated that massive black holes in the nuclei
of galaxies can cause tidal disruption of stars which approach
too close to them (Rees 1988). Snow clouds in galactic nuclei
run the same risk. But snow clouds are not safe, even if they are
well removed from galactic nuclei: because the typical density
inside a star is far in excess of that of a snow cloud, the latter
can be tidally disrupted by the former during close encounters.
The large cross-section for tidal interactions means that they are
expected to be the most frequent two-body process involving a
star and a snow cloud. Tidal stripping of snow-cloud envelopes
is expected to be more common than complete tidal disruption,
as the envelope is typically extended and has lower density
than the core.

5.5. Possible Observational Manifestations

Because we have been unable to find stable thermal
equilibrium solutions (Section 4.4), we must be circumspect
in proposing connections to the observed universe; however,
some brief comments are appropriate.
1. The neutral clouds that Walker et al. (2017) inferred, from

radio-wave scintillation, to be present in large numbers around
main-sequence stars must have low luminosities, low masses,
and large radii, and correspondingly low temperatures. They
could therefore be interpreted as hydrogen snow clouds.
2. Circumstellar snow clouds that survive the main-sequence

phase of a low-mass star’s life may become visible during post
main-sequence evolution, as the UV radiation field intensifies.
Thus snow clouds could explain the cometary knots that are

Figure 12. Spectral luminosity of the 28 μm S0(0) H2 emission line, for the
same cloud model as shown in Figures 3 and 11. The optical depth at line
center is very high, with emission from the core of the cloud being strongly
absorbed by the overlying, cold gas in the envelope. This spectrum is
appropriate to the case where convection speeds are negligible, so the line
broadening is exclusively thermal.

7 For the solutions with very large radii, on the other hand, the ambient
pressure has a great deal of influence—as noted in Section 3.3.1 and illustrated
in Appendix D.
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seen in the Helix and in other planetary nebulae (e.g., O’Dell &
Handron 1996; Matsuura et al. 2009).

3. Circumstellar snow clouds that survive the main-sequence
phase of a high-mass star’s life would be thermally disrupted
by the UV flash from any supernova explosion, leading to a
large fraction of the clouds’ H2 content being converted to
snowflakes on the dynamical timescale. Snow clouds might
therefore contribute to the rapid dust production that is
observed in supernovae (e.g., Matsuura et al. 2011).

4. Near-infrared observations toward the Galactic Center
have revealed a small, dusty cloud on a highly eccentric orbit
around Sgr A* (Gillessen et al. 2012). The low inferred mass
and large radius of this cloud place it near the upper envelope
of the models shown in Figure 5.

5. X-ray absorption events seen in some active galactic
nuclei give direct evidence for the existence of large numbers
of dense clouds (∼1011 cm−3), with sizes ∼au (Maiolino et al.
2010); these clouds could be hydrogen snow clouds.

6. Conclusions

We have constructed equilibrium models of cold, dense, self-
gravitating gas clouds manifesting H2 condensation. These
structures lie in a previously unoccupied region of the mass–
radius plane, having sub-stellar masses but radii that are
typically very large. With hard outer edges and high internal
pressures, our models describe mechanically robust, well-
defined entities that are perhaps more akin to stars and planets
than to the ISM. A key characteristic of our model clouds is
their low luminosities: they are so dim that they could be
present in very large numbers yet remain undetected. They are
a type of baryonic dark matter. Their thermal characteristics are
surprising, with temperatures in the outer regions of each cloud
ranging below that of the microwave background. That this
circumstance can exist in steady state is dependent on the
inward convection of heat, up the macroscopic temperature
gradient—a phenomenon that, as far as we are aware, is
demonstrated here for the first time.

Among our hydrostatic equilibria, we have identified thermal
equilibria appropriate to the Galaxy, in which radiative cooling
is balanced by cosmic-ray heating. These equilibria are all
thermally unstable, and so we must be cautious about any
possible connections between our models and observed
phenomena in the real universe. However, the Kelvin–
Helmholtz timescales of some of these equilibria—at the
low-mass end of the spectrum—are very long, and our
solutions might therefore be fair approximations to real-world
structures in a universe of age 1010 yr.

In general, the low luminosities of our models make them
prone to thermal imbalance, and strong heating must drive
secular expansion, which will ultimately be disruptive.
Disruption by physical collisions, and by tides, should also
be commonplace if snow clouds are a significant component of
the real universe. Disrupting snow clouds should yield trails of
gas and dust, and may thus be more readily detected than their
undisturbed parents. It is possible that they have already been
observed, in various astrophysical contexts, but not previously
recognized as such.
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Appendix A
Buoyancy Instability and Heat Transport

Suppose we have a fluid in hydrostatic equilibrium in a
gravitational field. The condition for the onset of buoyancy
instability is well known (e.g., Kippenhahn & Weigert 1994),
and is determined by the difference between the run of density
with pressure in the equilibrium fluid and the run of density
with pressure for adiabatic changes in the fluid. It is convenient
to introduce the operator
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which allows the instability criterion to be written as

rD < 0 Buoyancy Instability. 20( )

This condition is the fundamental dynamical criterion. With
further assumptions about the nature of the fluid, it can be
rewritten in other forms, described as follows.
Consider now a fluid whose composition need not be

uniform. In particular, let us allow for the possibility of a mean
molecular mass (MMM), m̄, that is a function of pressure (i.e.,
height within the gravitational field). We can write the density
as r r m= P T, ,( ¯ ), and any density interval dρ can be
expressed as a sum of the intervals d log P, d Tlog and

md log ¯ , weighted by the corresponding partial derivatives. We
can do this for the hydrostatic fluid structure, and for an
adiabatic trajectory, leading to
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The criterion for buoyancy instability can thus be rewritten in
terms of the right-hand side of Equation (21).
As a simple example, we can consider the case of a gas

containing a fixed number of atoms/molecules of each type, so
that the adiabatic derivative of m̄ is zero, and
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And if the gas is also ideal (i.e., r m=P kT ¯ ), then the
coefficients in Equation (21) are
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We thus arrive at a form of the criterion that is specific to ideal
gases with conserved particle numbers:

m
D > T
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Buoyancy Instability. 24
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Equation (24) is known as the Ledoux Criterion. If the fluid is
uniform in composition, then this becomes simply

D > T 0 Buoyancy Instability, 25( )
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which is known as the Schwarzschild Criterion. These results
are familiar in the context of stellar structure, for example (e.g.,
Kippenhahn & Weigert 1994).

Henceforth we use the term “convection” to refer to the fluid
motions that arise from a buoyancy instability.

The quantity DT is just the difference between the actual
temperature derivative in the hydrostatic structure and the
adiabatic trajectory of the fluid which makes up that structure.
If there is convection, then the sign of DT tells us about the
direction of convective heat flow, as follows. IfDT>0, then
a fluid parcel that has been displaced to a higher (lower)
pressure location is cooler (hotter) than its surroundings, and
heat will flow into (out of) the parcel. ConsequentlyDT>0
results in convective heat transport from high-pressure regions
to low-pressure regions. And, conversely, convection results in
heat transport from low-pressure to high-pressure regions
if DT<0.

In a fluid of uniform composition, then, the direction of
convective heat transport is always from high pressure to low
pressure—interior to exterior—because if DT<0, the
condition for instability given in Equation (25) will not be
met, and so there would be no convection.

In a fluid of non-uniform composition, however, either
direction of convective heat transport is possible, depending on
the gradient of m̄. Assuming that the fluid is just marginally
unstable to convection (i.e., Dρ;0), which is expected for
gentle convective overturn, we have

m
D T

d

d P

log

log
, 26

¯ ( )

and therefore heat flows down the MMM gradient. If MMM
increases inward, then convection (in cases where it takes
place) transports heat outward. But if MMM increases outward,
then convection (again, in cases where it takes place) transports
heat inward. And that is true even if the structure is hotter in the
interior, as is usually the case in practice. Thus we can have the
paradoxical circumstance of heat being transported up a
macroscopic temperature gradient.

That sounds like a violation of the Second Law of
Thermodynamics, but it is not. In fact, the way we determined
the direction of heat flow, by considering the sign of DT,
ensures that the Second Law is obeyed, because DT reflects
the temperature differences on a microscopic level. The key
point is that fluid elements are displaced during convection, and
in the course of those displacements, they change temperature
as a result of adiabatic compression or expansion. If they
change temperature by more than the background fluid, then
convection, if it occurs, will transport heat up the pressure
gradient into the interior.

It is also helpful to remember that Dis the gradient
relative to the local isentrope; thus the sign ofDT reflects the
sign of the entropy gradient, which indeed is the quantity we
expect to dictate the direction of heat flow.

For the case of an ideal gas that varies in MMM, we can
understand the direction of heat flow simply by considering the
equation of state, as follows. In gentle convective overturn, the
fluid motions bring together parcels that have different MMM,
but they must have essentially the same pressure and density,
and therefore they have the same value of m r=kT P¯ . Thus
for two distinct fluid elements that have been juxtaposed by
convection, it is always the one with the larger MMM that is

hotter, and therefore heat always flows down the MMM
gradient.
In studies of stellar structure, one encounters examples of

both positive and negative MMM gradients, as a result of
nuclear burning—either in the core or in a thin shell—and in
both cases it has been shown that convective motions can arise
even in a configuration that is dynamical stable according to
Equation (20). This behavior is given different names
according to the sign of the MMM gradient: if MMM increases
inward, it is termed “semi-convection” (Schwarzschild &
Härm 1958; Kato 1966), whereas if MMM increases outward,
it is referred to as “thermohaline convection” (Ulrich 1972;
Charbonnel & Zahn 2007). Despite the different names, there is
a common aspect here: convective motions may develop in a
dynamically stable configuration as a result of the exchange of
heat between displaced fluid parcels and their surroundings—a
process that is excluded from the development in this appendix
by use of the adiabatic approximation for the trajectory of the
displaced fluid. It would be interesting to study the onset of
snow-cloud convection in the non-adiabatic case, but that is
beyond the scope of this paper. Here we simply note that
although thermohaline convection is slower than a dynamically
driven convection, and thus yields smaller heat fluxes, the
direction of the heat flow would still be inward. The reason is
that the isentrope corresponds to zero precipitation of the
condensate, and one always expects some degree of precipita-
tion to occur so entropy will increase outward.

Appendix B
Thermodynamic Properties of H2 Near Saturation

In this appendix we demonstrate the accuracy of various
facets of our adopted thermophysical description (Section 2).
We do so by comparing with data for para-H2, taken from
tables 2.2, 2.3, and 9.5 of Roder et al. (1973).

B.1. Molar Volume

Our adopted model of the gas pressure is the ideal gas law,
P=NkT/V, for both He and H2, but with the partial pressure of
H2 limited to the saturation pressure, Psat(T). The left-hand panel
of Figure 13 shows departures from ideality of the saturated
vapor, as gauged by its volume relative to that of an ideal gas of
the same temperature and pressure. From that graph, we can see
that departures from ideality are very small right up to the triple
point (Ttrip;13.8 K), and are still below 10%at T=20K,
but for temperatures close to the critical temperature
(Tcrit;32.9 K), an ideal gas is a poor model of the saturated
vapor. The right-hand panel of Figure 13 shows the molar
volume of both the saturated gas (red dots) and the condensate
(blue dots), as a function of temperature. Also shown is our
model for the molar volume of the saturated gas, as given by the
ideal gas law in combination with Equation (5) for the saturation
pressure. We neglect the molar volume of the condensate.
To determine how the ideal gas law performs for pressures

below the saturation pressure, we have used the vanderWaals
equation of state as a guide (Johnston 2014). The vanderWaals
equation of state predicts departures from ideal gas behavior that
scale approximately as P/Psat for a given isotherm. Thus, even
for T∼Tcrit, the ideal gas law should be accurate to a few
percent for pressures that are Psat/10. We conclude that the
ideal gas law is an adequate representation of gaseous para-H2,
except in the immediate vicinity of the critical point.
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B.2. Molar Entropy

Figure 14 shows the entropy of gaseous para-H2 under
saturated conditions, as a function of temperature, together with
our adopted description, as given in Equation (9). Except for
temperatures very close to the critical temperature, the entropy
of saturated, gaseous para-H2 is well described by
Equation (9).

Also shown in Figure 14 is the entropy of the condensate,
which in our model is neglected entirely. That is clearly a good
approximation at all temperatures below the triple point. The
latent heat of fusion of para-H2 introduces a discontinuity in
the entropy of the condensate at the triple point. Above that
point, our neglect of the condensate entropy becomes
progressively worse until, at the critical point, the entropy of
the liquid is identical with that of the saturated vapor.

Appendix C
Evaluation of the Cosmic-ray Heating Rate

One can evaluate the cosmic-ray power input to a parcel of
gas, of mass ΔM, from ΓcrΔM, where Γcr is the specific
heating rate. For diffuse interstellar gas, one usually assumes

that Γcr is approximately constant—that is, independent of
column-density, in the limit of low column-density. Its value
has previously been estimated as Γcr;3×10−4 erg g−1 s−1

(Cravens & Dalgarno 1978; Webber 1998), with most of the
heating coming from cosmic-ray protons. The clouds discussed
in this paper are much denser than the diffuse ISM, and the
center-to-surface column densities are so high that the interior
cosmic-ray spectrum is substantially attenuated relative to the
interstellar spectrum. In this circumstance we must evaluate Γcr

as a function of depth in the cloud, accounting for the change in
spectrum with depth. In this appendix we present details of that
calculation.
We wish to evaluate the heating rate for a large number of

different structures, so we employ a simple calculation based
on the continuous slowing down approximation, and we
assume that the energy of all secondary particles—bremsstrah-
lung photons, pions, electrons, and so on—is absorbed on the
spot. Although this approach is motivated mainly by a need for
simplicity, it is a sensible approximation to make because (i)
charged secondaries are stopped by Coulomb interactions with
the gas; (ii) far-UV (and shorter wavelength) photons are
absorbed by electronic transitions in the He atoms and H2

Figure 13. Left panel: the molar volume of the saturated vapor of para-H2 relative to that of an ideal gas of the same temperature and pressure. Right panel: the molar
volume of the saturated vapor of para-H2 (red dots), compared to our model (black line), which is that of an ideal gas at the same temperature and with the pressure as
given by Equation (5). Also shown is the molar volume of the condensate (blue dots). All data are as given in Tables 2.2 and 2.3 of Roder et al. (1973).

Figure 14. Left panel: the entropy of the saturated vapor of para-H2 (red dots), compared with our model description (Equation (9); black line). Also shown is the
entropy of the condensate (blue dots). The entropy discontinuity between solid and liquid para-H2 reflects the latent heat of fusion of 117 J mol−1 (Roder et al. 1973,
tables 2.3 and 9.5). Right panel: the entropy difference between the saturated vapor and the condensate (red dots); our model for the entropy difference (black line) is
the same curve shown in the left panel, because the entropy of the condensate is neglected.
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molecules; (iii) near-IR (and shorter wavelength) photons are
likely to be absorbed by H2 snowflakes; and (iv) excited H2

rovibrational states may de-excite more rapidly by collisions
than by quadrupole radiation emission.

As the starting point of our calculation, we adopt the
stopping power ( Sd d ) in hydrogen and helium of electrons
and protons given by the ESTAR and PSTAR models.8 Those
tables cover particle energies 10−3

–104 MeV. For higher
energy cosmic rays, we calculated ionization losses using the
Bethe-Bloch formula, with the effective ionization energies for
hydrogen (19.2 eV), and helium (41.8 eV), quoted in the
ESTAR/PSTAR database. And in the case of cosmic-ray
electrons, we added bremsstrahlung losses, which are important
at high energies, being a factor  crit larger than the ionization
losses (Eidelman et al. 2004). We determined crit appropriate
to hydrogen and helium by matching to the ESTAR tables at
104 MeV.

The PSTAR tables do not include “pionization” losses—due
to pion production when cosmic-ray protons interact with
nucleons. Pionization becomes important at energies of
102 MeV and above. A convenient approximation to these
losses, valid for   10 MeV3 , is provided by equation (34) of
Krakau & Schlickeiser (2015),

b-
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with β being the proton speed, in units of c, and  the kinetic
energy in MeV. This approximation was presented by Krakau
& Schlickeiser (2015) for cosmic-ray protons interacting with
target protons in the interstellar gas; we adopt it also for target
neutrons, so that Equation (27) is used here for the pionization
losses of both hydrogen and helium.

In this way we extended the stopping power calculations up
to 106 MeV for both electrons and protons. The combined
inverse stopping power (i.e., S d d ) of the hydrogen–helium
mixture was then determined by adding the inverse stopping-
powers of the hydrogen and the helium, weighted according to

their 0.75, 0.25 average mass-fractions, respectively. This
procedure yields the results shown in Figure 15.
As detailed in Section 3 of this paper, each cloud has a

compositional gradient, being helium rich in the outer regions.
Using the mean cloud composition to arrive at a single stopping
power, as a function of energy, for each particle species, is thus
an approximation. It is a convenient approximation to make
because the heating rate due to cosmic rays coming from a
particular direction is then only a function of depth (expressed
as column-density, Σ), rather than being a function of both the
hydrogen column and the helium column. A more precise
treatment of the energetic particle energy losses does not seem
warranted in this initial sketch of cloud properties, given the
other uncertainties involved in the calculation.
The stopping power of the fluid tells us the differential

heating rate (MeV g−1 s−1 sr−1) due to a particle beam of
intensity If (cm

−2 s−1 sr−1 MeV−1):
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where If is the beam intensity at the point where we wish to
calculate the heating. If this lies at depth Σ, measured along the
direction of incidence of the beam, then we can relate the
particle kinetic energy at the site of interest, f , to the initial
particle kinetic energy, i, via
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And particles in the beam are conserved, so D = D I If f i i,
where Ii is the particle spectrum at zero column (i.e., the
interstellar particle spectrum), whence
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In practice, the integration in Equation (30) is taken over the
finite domain -  10 MeV 10 MeVf

3 6 , for which we have
a good description of the particle energy losses (Figure 15).

Figure 15. Stopping power ( Sd d ) for protons (red) and electrons (blue) of
pure hydrogen (dashed), pure helium (dotted), and a hydrogen–helium mixture
that is 25% He by mass (solid curves). Figure 16. Our adopted cosmic-ray spectra for protons (red line; Equation (31))

and electrons (blue line; Equation (32)). Also shown are the interstellar spectra
measured by Voyager 1 (large circles; Cummings et al. 2016), along with the
AMS electron spectra at high energies (small circles; Aguilar et al. 2014).

8 http://www.nist.gov/pml/data/star/

19

The Astrophysical Journal, 881:69 (22pp), 2019 August 10 Walker & Wardle

http://www.nist.gov/pml/data/star/


Low energy electron and proton spectra are strongly
modulated by the solar wind, making it difficult to determine
the interstellar cosmic-ray spectra. The Voyager 1 spacecraft
crossed the heliopause in August 2012, and subsequently made
direct measurements of the interstellar proton spectrum in the
energy range from 3 to 350MeV, and the interstellar electron
spectrum in the range 3–70MeV (Cummings et al. 2016).
The Voyager 1 data are shown in Figure 16, along with our
adopted model spectra. For protons, we use the spectrum given
by Beringer et al. (2012), which lies close to the Voyager 1
data:
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where  is the kinetic energy of the particle, in MeV, and mpc
2

is the proton rest energy. For electrons, we have used an
analogous form (i.e., with the proton rest mass replaced by the
electron rest mass), but with an additional spectral break at
850MeV:
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As can be seen in Figure 16, this function approximately
reproduces both the Voyager 1 data at low energies (Cummings
et al. 2016) and the AMS data at high energies (Aguilar et al.
2014). The associated energy–densities are 0.66 eV cm−3, for
protons, and 0.024 eV cm−3, for electrons.

Using the cosmic-ray spectra given in Equations (31) and (32)
leads to differential heating rates, dΓcr/dΩ, as a function of depth,
Σ, shown in the left panel of Figure 17. By integrating over
column density, we then obtain the total absorbed beam intensity,

Iabs(Σ), as shown in the right panel of Figure 17. At low column
densities, the differential heating rate is only a weak function of
column-density, and the absorbed intensity is roughly linear in Σ.
At large columns, essentially all the cosmic-ray particles are
stopped, and the absorbed intensity saturates at a value equal to
the total cosmic-ray intensity: ò I dabs +  I Ip e{ ( ) ( )}
; 2.63× - - - -10 erg cm s sr3 2 1 1.
Given the absorbed intensity, as a function of column-

density, the spherical symmetry of our models renders it
straightforward to compute the total heating rate. Consider a
point on the surface of the cloud. Particles incident at polar
angle θ encounter a column-density Σ(θ), and the total cosmic-
ray power input, cr, is just 4πR

2 times the total absorbed flux,
whence

òp q q q= S
p

 R d I2 sin 2 . 33cr
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Appendix D
Pressure Profiles

All of our cloud models comprise a core that is an n=3/2
polytrope and an envelope where H2 is in phase equilibrium.
For small values of Te/Tc, the resulting structure hardly differs
from a pure n=3/2 polytrope, but as Te/Tc increases, the
envelope becomes increasingly prominent. Figure 18 shows
this progression in the form of pressure profiles, for a sample of
30 snow clouds spanning most of the range in masses and radii
that is displayed in Figure 5. We note that where the pressure is
small compared to that of the ambient medium, the computed
structure is not relevant in practice, as the outer layers of the
cloud would be crushed by its surroundings.

Figure 17. Left panel: the heating rate per unit solid angle, as a function of column-density, for cosmic-ray electrons (blue curve) and protons (red curve), calculated
for the spectra given in Equations (31) and (32), and the stopping power of the H2–He mixture as shown in Figure 15. Right panel: the absorbed intensity,

ò= S G WI d d dabs cr , for cosmic-ray protons and electrons combined.
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