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ABSTRACT
A systematic, semi-automated search for pulsar glitches in the first UTMOST pub-
lic data release is presented. The search is carried out using a hidden Markov model
which incorporates both glitches and timing noise into the model of the assumed phase
evolution of the pulsar. Glitches are detected through Bayesian model selection be-
tween models with and without glitches present with minimal human intervention.
Nine glitches are detected among seven objects, all of which have been previously
reported. No new glitches were detected. Injection studies are used to place 90% fre-
quentist upper limits on the size of undetected glitches in each of the 282 objects
searched. The mean upper limit obtained is ∆f90%/f = 1.9 × 10−8, with a range of
4.1 × 10−11 ≤ ∆f90%/f ≤ 2.7 × 10−7, assuming step events with no post-glitch re-
coveries. It is demonstrated that including glitch recovery has a mild effect, in most
cases increasing the upper limit by a factor of . 5 conservatively assuming complete
recovery on a timescale of 100 d.
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1 INTRODUCTION

The secular electromagnetic spindown of a rotation-powered
pulsar is sometimes interrupted by a sudden increase in the
spin frequency, known as a glitch. Glitches are often but not
always accompanied by a change in the secular spin-down
rate and a quasi-exponential recovery (Lyne & Graham-
Smith 2012). The underlying cause of glitches is unknown
(Haskell & Melatos 2015). The standard view of the phys-
ical mechanism behind glitches invokes pinning and subse-
quent unpinning of the vortices of the superfluid neutron
component to the lattice of nuclei in the inner crust (An-
derson & Itoh 1975), but this broad picture is by no means
certain. Long-term statistical analyses have uncovered inter-
esting features of glitch behaviour both in individual objects
(Espinoza et al. 2014; Howitt et al. 2018; Carlin & Melatos
2019; Ho et al. 2020) and across the pulsar population (Lyne
et al. 2000; Melatos et al. 2008; Espinoza et al. 2011; Yu et al.
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2013; Fuentes et al. 2017; Melatos et al. 2018). Note that we
distinguish between glitches, which involve a jump in the
spin frequency, and events involving abrupt changes in fre-
quency derivative associated with magnetospheric changes
(Lyne et al. 2010). Although the latter are glitch-like in
some respects and interesting in their own right, they are
a distinct class of events and we will not search for them
explicitly in this work.

Statistical inferences about the glitch phenomenon rely
on the completeness of the catalogues of detected glitches.
However, the traditional method of glitch detection, which
involves identifying a glitch signature“by eye”in a set of tim-
ing residuals (Espinoza et al. 2011; Yu et al. 2013), makes
it difficult to assess completeness systematically. Espinoza
et al. (2014) and Yu & Liu (2017) employed automated glitch
detection methods to evaluate detectability limits. The tech-
nique presented by Espinoza et al. (2014) has been applied to
timing data from the Crab and Vela pulsars (Espinoza et al.
2021), while the technique presented by Yu & Liu (2017) was
tested on simulated data but not used to search for glitches
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2 L. Dunn et al.

in real datasets. Most recently, Singha et al. (2021) have de-
veloped an real-time glitch detection pipeline which operates
with minimal human intervention and incorporated it into
the timing programme at the Ooty Radio Telescope. Singha
et al. (2021) reported initial tests of detectability limits with
this pipeline, and as more data become available a clearer
picture will emerge of the completeness of the glitch sample
reported as part of this programme.

Melatos et al. (2020) developed a complementary
method for pulsar glitch detection which tracks the pulse
frequency and frequency derivative with a hidden Markov
model (HMM)1. The HMM selects between models with and
without glitches within a Bayesian framework, complement-
ing model selection studies with temponest (Lentati et al.
2014; Shannon et al. 2016; Parthasarathy et al. 2019; Lower
et al. 2020). The HMM dynamics include secular spin down
and stochastic spin wandering (“timing noise”), as well as
step changes associated with glitches (Melatos et al. 2020).
As the HMM detects glitches without human intervention,
it is well-suited to analysing a large number of pulsar timing
datasets. Its speed makes it practical to do injection stud-
ies to obtain upper limits on the size of undetected glitches,
and hence quantify the completeness of the existing and new
catalogues.

In this work we search for glitches in the datasets re-
leased as part of the UTMOST pulsar timing programme
(Jankowski et al. 2019; Lower et al. 2020). These datasets
were released in March 2020, and contain observations of
300 pulsars taken between January 2014 and August 2019.
To date, 12 glitches across seven pulsars have been detected
as part of this timing programme using traditional meth-
ods (Lower et al. 2020). In this paper we search for new
glitches beyond those discovered to date and set upper lim-
its on the size of undetected glitches in 282 of the 300 pul-
sars. The layout of the paper is as follows. In Section 2 we
briefly describe the data. In Section 3 we describe the HMM
and explain how to choose the HMM’s control variables and
search parameters. In Section 4 we present the results of the
search. We narrow down the initial list of glitch detections
through a veto procedure, and follow up the survivors with
a refined HMM analysis to determine the basic glitch pa-
rameters: glitch epoch and glitch size. Finally in Section 5
we present systematic upper limits on the size of undetected
glitches in the UTMOST data release.

2 DATA

The UTMOST pulsar timing programme is an ongoing
campaign conducted at the Molonglo Observatory Syn-
thesis Telescope, a pair of 778 m long east-west cylindri-
cal paraboloid reflectors located near Canberra, Australia
(Bailes et al. 2017). We searched a subset of the data from
the first public release2 (Lower et al. 2020). The data consist
of times of arrival (ToAs) for 300 pulsars, mostly recorded
between October 2015 and August 2019, as well as best-fit
timing models. We search for glitches only in the 283 pulsars

1 https://github.com/ldunn/glitch hmm
2 https://github.com/Molonglo/TimingDataRelease1/

Table 1. Observational statistics for the first UTMOST public data
release. All quantities are calculated on a per-pulsar basis, and we

take the minimum, mean and maximum over the complete set of

pulsars in the data release.

Minimum Mean Maximum

Observing timespan (d) 268 1054 2024

Cadence (d) 1.4 16 49

Number of ToAs 25 107 1458

that are not in binary systems, due to difficulties in extract-
ing ToAs from tempo2 which are referenced to the reference
frame of the pulsar, rather than the solar system barycentre.

The volume and density of available timing data vary
significantly between pulsars. Table 1 summarises the vari-
ation in observing timespan, cadence, and number of ToAs
available across the population of UTMOST pulsars. The
observing timespan is the time between the first available
ToA and the last available ToA for each object, and the ca-
dence is the mean time elapsed between consecutive ToAs. A
full description of the observation, data reduction and tim-
ing analysis procedures is given by Jankowski et al. (2019).

3 HIDDEN MARKOV MODEL

The implementation of a HMM used to search for glitches is
described in detail by Melatos et al. (2020). Here we provide
a brief description of the most pertinent aspects. Section 3.1
discusses the probabilities which determine the dynamics of
the HMM, and its connection to the observed data. Section
3.2 introduces the Bayesian model selection procedure which
is used to select between models with and without glitches
present. In Section 3.3 we discuss the boundaries and dis-
cretisation of the state space of the HMM. The choices for
the various parameters are summarised in Table 2. These
are the choices used in the initial searches for previously un-
known glitches (Section 4) and in setting upper limits on the
sizes of undetected glitches (Section 5). Analyses aimed at
estimating parameters of detected glitches (Sections 4.1–4.5)
may require different parameter choices on a case-by-case ba-
sis, usually in the allowed range of frequencies, which may
need to be extended by more than an order of magnitude to
accomodate the glitch.

3.1 Transition and emission probabilities

A HMM is an automaton which transitions stochastically
between a set of hidden states at discrete times t1, . . . , tNT ,
which are spaced unequally in general. The states are hidden
in the sense that they cannot be observed directly; the state
of the system must be inferred from observations of auxil-
iary variables related probabilistically to the hidden states
rather than the hidden states themselves. The probability of
jumping from state qi at time tn to state qj at tn+1, which is
called the transition probability Aqjqi(tn), depends only on
the state at tn by the Markov property. The probability that
the system occupies the state qi at time tn, given an obser-
vational datum o(tn) collected at the same time, is called the
emission probability Lo(tn)qi . The prior, Πqi , is the proba-
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HMM limits on UTMOST glitches 3

Table 2. Domain of interest of physical parameters and HMM control parameters.

Parameter Symbol Units Value

Timing model reference epoch T0 MJD From UTMOST

Secular frequency fLS Hz From UTMOST

Secular frequency derivative ḟLS Hz s−1 From UTMOST

Frequency deviation [f−, f+] Hz [−3, 3]× 10−7

Frequency derivative deviation [ḟ−, ḟ+] Hz s−1 [max(0.1ḟLS,−10−14),min(−0.1ḟLS, 10−14)]

Frequency bin size ηf Hz 4.0× 10−10

Frequency derivative bin size ηḟ Hz s−1 (ḟ+ − ḟ−)/11

Timing noise strength σ Hz s−3/2 max(10−21, ηḟ 〈xn〉
−1/2)

ToA uncertainty σToA s From UTMOST

Bayes factor threshold Kth None 101/2

bility that the system is initialized in the state qi. Together,
Aqjqi(tn), Lo(tn)qi , and Πqi define a HMM uniquely.

To apply a HMM to pulsar timing, we identify the hid-
den states qi with a discrete grid of (f, ḟ) pairs, which encode
the insantaneous spin frequency and its first time derivative.
The hidden (f, ḟ) states are combined with fixed secular val-
ues fLS and ḟLS measured at a reference epoch T0 to give
the instantaneous spin frequency [fLS+ ḟLS(tn−T0)]+f and
time derivative ḟLS + ḟ respectively at time tn. In this work
we measure fLS and ḟLS using tempo2 (Hobbs et al. 2006).
We note that while the HMM requires a measurement of
fLS and ḟLS, these values may be derived only from a small
subsection of the data in cases where a phase-connected solu-
tion spanning the whole dataset is not available. Although
phase-connected solutions are available for all of the UT-
MOST pulsars searched in this work, the HMM does not
incorporate the provided pulse numbering information. The
states can be enlarged to include the second time deriva-
tive f̈ (and higher derivatives), but systematic validation
tests with real and synthetic data indicate that state en-
largement is unnecessary for the application in this paper
(Melatos et al. 2020). The observational datum at each time
tn is the ToA difference o(tn) = tn−tn−1 [for ease of notation
we write xn ≡ o(tn) in the remainder of this paper], which
is related probabilistically to the hidden states.The prior is
deliberately chosen to be flat, i.e. Πqi is constant within
a restricted parameter domain (see Section 3.3), as qi(t1) is
unknown and astrophysically irrelevant. Other structures for
the HMM are possible, of course, and the reader interested
in pulsar timing is encouraged to experiment with them (Ra-
biner 1989).

In the HMM framework, the probability of observing a
particular ToA gap xn if the hidden state of the pulsar is
(f, ḟ) depends on the accumulated rotational phase over the
gap, Φ(tn; f, fLS, ḟ , ḟLS, T0) [denoted Φ(tn; . . .) for brevity].
Note that Φ(tn; . . .) satisfies 0 ≤ Φ(tn; . . .) ≤ 1 over one
period, i.e. it is in units of cycles, not radians. The full ex-
pression for Φ(tn; . . .) is

Φ(tn; . . .) = [f + fLS + ḟLS(tn − T0)]xn −
1

2
(ḟLS + ḟ)x2n. (1)

The minus sign in the second term arises because we are em-
ploying a backwards Taylor expansion. Equation (1) can be
generalised to include a secular second frequency derivative
f̈0, if required (Melatos et al. 2020).

If Φ(tn; . . .) is close to an integer, the probability of
observing the ToA gap xn is high. This is quantified via a

von Mises distribution, in which the probability of observing
z given a hidden state (f, ḟ) is given by

Lxnqi =
exp{κ cos[2πΦ(tn; . . .)]}

2πI0(κ)
, (2)

where I0(x) is the zeroth modified Bessel function of the
first kind, and κ is a parameter known as the concentration.
Roughly speaking κ can be thought of as the reciprocal of
the variance of 2πΦ(tn; . . .). There are two main contribu-
tions to variance in Φ(tn; . . .): measurement uncertainty in
the ToAs, and the spacing in the discretized f -ḟ grid. If the
uncertainties in the ToAs at the beginning and end of the
gap are σToA,1 and σToA,2 respectively then the contribution
to the phase variance is f2

LS

(
σ2
ToA,1 + σ2

ToA,2

)
. Given spac-

ings in f and ḟ of ηf and ηḟ , the respective contributions to

the phase variance are (ηfxn)2 and (ηḟx
2
n/2)2. Combining

these contributions in quadrature, we arrive at3

κ = (2π)−2[f2
LS

(
σ2
ToA,1 + σ2

ToA,2

)
+ (ηfxn)2 + (ηḟx

2
n/2)2]−1. (3)

During each gap between consecutive ToAs, we assume
that the pulsar’s hidden state evolves stochastically due to
timing noise in the absence of a glitch. The form of the tim-
ing noise determines the tarnsition probability Aqjqi and is
unknown a priori for any individual pulsar. One reasonable
model, introduced by Melatos et al. (2020) and tested satis-
factorily on real data (Melatos et al. 2020; Lower et al. 2021)
but certainly not unique, assumes that the timing noise is
driven by a white-noise torque derivative,

d2f

dt2
= ξ(t), (4)

where ξ(t) is a Langevin term satisfying

〈ξ(t)ξ(t′)〉 = σ2δ(t− t′) (5)

and σ is the parameter which controls the strength of the
timing noise. Equations (4) and (5) lead to a robust HMM
with easy-to-specify transition probabilities Aqjqi(tn). An
explicit expression for Aqjqi(tn) is given in equations 10–
13 and B7–B11 of Melatos et al. (2020). The choice of (4)
and (5) is pragmatic. Pulsars are not expected to obey (4)
and (5) exactly for many reasons. For example, (4) and (5)

3 The factor (2π)−2 in (3) was ommitted accidentally by Melatos

et al. (2020) in equations (8) and (C3) of the latter reference.

MNRAS 000, 1–14 (2020)
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produce Brownian motion in the torque, whereas there is
observational evidence that some pulsars exhibit Brownian
motion in the frequency, i.e. df/dt = ξ(t) (Cordes & Helfand
1980; Cordes & Downs 1985; Parthasarathy et al. 2019).

The choice of σ is also pragmatic and certainly not
unique. A detailed study of how to optimize σ on a per-
pulsar basis within the HMM framework is beyond the scope
of this work; a first pass at some rules of thumb is found in
Melatos et al. (2020). Here we follow Melatos et al. (2020)
in adopting a simple prescription which is based on the fact
that the HMM only tracks ḟ to a certain resolution, ηḟ (see
Section 3.3). We demand that the necessary“correction”due
to binning in the evolution of f across a ToA gap of length
xn is smaller than the dispersion in f caused by the random
walk described in (4) and (5), which implies

σ = ηḟ 〈xn〉
−1/2, (6)

where 〈xn〉 is the average length of ToA gaps per pulsar.
This ensures that the discretisation of ḟ does not lead to
false alarms, although in some cases it may degrade the per-
formance of the glitch detector by inflating needlessly the
strength of timing noise included in the model. Any degra-
dation in sensitivity due to this effect is reflected in the upper
limits calculated in Section 5. Because the effect of discreti-
sation of ḟ is absorbed into the timing noise in the model,
we do not expect a significant effect on inferences made on
the value of f (e.g the pointwise most likely sequences f̂(tn)
discussed in Section 4). The mathematical form of (6) is jus-
tified in Section 6.1 of Melatos et al. (2020). We addition-
ally follow Melatos et al. (2020) and impose a lower bound
σ ≥ 10−21 Hz s−3/2 to avoid numerical underflow. The pre-
scription described here and listed in Table 2 has been suc-
cessfully tested on synthetic and real data which explicitly
does not conform to the timing noise model of equations (4)
and (5) (Melatos et al. 2020; Lower et al. 2021).

If the model includes a glitch during a given ToA gap,
then the evolution of the hidden state must be modified ac-
cordingly. We adopt the unrestrictive prescription of Melatos
et al. (2020): a glitch consists of a positive frequency incre-
ment and a possible change in frequency derivative which is
allowed to be positive or negative. Explicitly, if the pulsar is
in the hidden state (f, ḟ) at the beginning of a ToA gap of
length xn, then it is allowed to transition with equal proba-
bility to any state (f ′, ḟ ′) as long as one has f ′ > f+ḟxn. No
restriction is placed on the value of ḟ ′ (within the boundaries
specified in Section 3.3).

3.2 Model selection

A HMM is a Bayesian inference tool. It works with the fun-
damental quantity

Pr(Q1:NT | O1:NT ) =Πq(t1)Lo(t1)q(t1)

×
NT∏
n=2

Aq(tn)q(tn−1)Lo(tn)q(tn), (7)

which is the probability that the system occupies the hidden
state sequence Q1:NT = {q(t1), . . . , q(tNT )} given the obser-
vation sequence O1:NT = {o(t1), . . . , o(tNT )} and a model
M =

{
Aqjqi , Lo(tn)qi ,Πqi

}
. The model with no glitch is de-

noted M0, and the model with a glitch during the kth ToA
gap is denoted M1(k). For a given model M and timing data

D = O1:NT we calculate the model evidence Pr(D |M) us-
ing the HMM forward algorithm (Rabiner 1989). We can
then calculate the ratios

K1(k) =
Pr[D |M1(k)]

Pr(D |M0)
, (8)

for 1 ≤ k ≤ NT , which are Bayes factors, indicating sup-
port for each of the NT glitch-containing models over the
no-glitch model. According to Bayes’s theorem, the ratio of
posterior probabilities of the two models includes an extra
factor containing the prior probabilities,

Pr[M1(k) | D]

Pr(M0 | D)
=

Pr[D |M1(k)]

Pr(D |M0)

Pr(M0)

Pr[M1(k)]
. (9)

Here we make the simplifying assumption Pr[M1(k)] =
Pr(M0) for all k, and so the Bayes factor K1(k) and the ra-
tio of posterior probabilities coincide. If max1≤k≤NT K1(k)
exceeds a pre-defined threshold Kth, we say that we have a
glitch candidate. We note briefly that the permissive glitch
model used may also accomodate possible abrupt changes in
spin-down state (Lyne et al. 2010), and thus model selection
may produce glitch candidates associated with these events
as well as more typical glitch events.

To account for possible multiple glitches in a dataset,
we adopt the greedy hierarchical approach described in Sec-
tion 4.2 of Melatos et al. (2020). If a glitch candidate is
detected when comparing the models M1(k) to M0, we set
k∗1 = argmaxkK1(k), and then calculate the ratios

K2(k2) =
Pr[D |M2(k∗1 , k2)]

Pr[D |M1(k∗1)]
, (10)

where M2(k∗1 , k2) is the model containing two glitches at
the k∗1 and k2th ToA gaps. If a second glitch candidate is
detected, i.e. max1≤k2≤NT K2(k2) > Kth, we repeat the pro-
cedure, now comparing M3(k∗1 , k

∗
2 , k3) against M2(k∗1 , k

∗
2).

The procedure repeats until none of the Bayes factors ex-
ceeds Kth.

In order to follow up each candidate, we calculate the
posterior distribution of frequency and frequency deriva-
tive states during each ToA gap using the HMM forward-
backward algorithm (Rabiner 1989). The logic behind this
step is discussed in detail in Section 4.3 and Appendix A of
Melatos et al. (2020). This posterior distribution can then
be used to infer the sequence of most likely frequency states,
and hence the most likely size of the frequency jump due to
the glitch.

The Bayes factor threshold determines when we have
a glitch candidate to be followed up with further analy-
sis. Here we adopt a fixed threshold of 101/2, motivated by
the synthetic data tests presented in Section 6 of Melatos
et al. (2020). Kth = 101/2 gives a false alarm probability
of roughly 1%, provided that the timing noise is not much
stronger than what is included in the HMM.

3.3 Domain of interest

The domain of interest (DOI) refers to the set of hidden
states which are included in the HMM. As in Melatos et al.
(2020), we consider only DOIs which form a grid in a “rea-
sonable” f–ḟ region, which is restricted to avoid wasteful
computation; the state sequence Q1:NT cannot wander un-
reasonably far from the tempo2 fit fLS and ḟLS, because

MNRAS 000, 1–14 (2020)
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timing noise and glitches represent modest perturbations
on the secular trend. The choices to be made are then the
boundaries of the region, and the spacing between points in
the grid. The typical DOI parameters used in this work are
summarised in Table 2.

When searching for unknown glitches and setting up-
per limits on the size of undetected glitches, the boundary
of the f region is chosen to be the same for all pulsars in this
study: the region covered is −3 ≤ f/

(
10−7 Hz

)
≤ 3. This

range generously brackets the typical wandering due to tim-
ing noise measured in young pulsars to date. The spacing
in f is also held fixed for all pulsars at ηf = 4 × 10−10 Hz.
This choice represents a trade-off between sensitivity and
computational cost. When performing follow-up analysis of
a glitch candidate, the range and spacing in f are sometimes
modified to encompass the pre- and post-glitch frequencies.
In the case of a large glitch, this means increasing the upper
boundary of the f region to a value on the order of 10−5 Hz.
In this case the value of ηf must also be increased to keep
the total number of hidden states in the DOI small enough
that the computation remains tractable.

The domain of interest and grid spacing in ḟ vary be-
tween pulsars when searching for new glitches and setting
upper limits. Given a measured secular spindown ḟLS, we

take the ḟ region to be
∣∣∣ḟ ∣∣∣ ≤ min(10−14 Hz s−1,−0.1ḟLS).

The region is empirically determined, guided by validation
experiments with synthetic data, which show that timing-
noise-driven excursions in ḟ are small compared to ḟLS

(Melatos et al. 2020). The ḟ spacing ηḟ is chosen so that
there are always 11 points in the domain. This choice is mo-
tivated principally by a desire to keep computational cost
under control. As a side effect, pulsars with larger values of
ḟLS have larger values of σ in the HMM’s timing noise model:
a larger ḟLS gives a larger ηḟ , and by equation (6) this in

turns gives a larger σ. While this relation between ḟLS and σ
comports with the astrophysical fact that timing activity is
correlated with ḟLS (Arzoumanian et al. 1994; Hobbs et al.
2010; Lower et al. 2020), it does not do so by design. It is
a consequence of pragmatic choices which aim to keep false
alarms rare [in the case of equation (6)] and computational
cost low (in the case of the choice of ηḟ ).

4 UTMOST GLITCHES

We search for glitches in the UTMOST timing data in three
stages. In the initial stage, every pulsar is analysed using
the HMM parameters set out in Table 2. The results of the
initial search are presented in Table 3. We report every glitch
candidate with a Bayes factor greater than Kth = 101/2. In
the second stage, candidates are followed up with a simple
veto procedure, and an estimates of the glitch parameters
are calculated for those candidates which survive the veto.

Before estimating the parameters of each candidate, we
check that the candidate is not due to a transient distur-
bance. Such a disturbance may be caused by the conditions
at the observatory, e.g. a clock error (Verbiest & Shaifullah
2018). It may also have astrophysical origins. Some pulsars
exhibit “mode-changing”, switching between a small num-
ber of distinct pulse profiles on timescales of minutes, which
can lead to apparent jumps in the pulse phase (Backer 1970;

Helfand et al. 1975; Wang et al. 2007). Changes in propaga-
tion through the interstellar medium can also lead to similar
apparent phase jumps (Goncharov et al. 2021). To exclude
events of this kind, we re-run the HMM for each candidate
using identical parameter choices, but with the ToAs imme-
diately bracketing the candidate removed. If one then ob-
tains K1(k) < Kth, the candidate is vetoed and no further
analysis is performed. The results of this veto procedure are
noted in the right-most column of Table 3. Three candidates
are vetoed in this way, leaving eight to be followed up in the
second stage of the search. This veto procedure does risk dis-
carding candidates which correspond to true glitches, if the
cadence around the candidate is low and the glitch is small.
Appendix A describes further investigation of each of the
three vetoed candidates, in an effort to determine whether
they are transient disturbances caused by one of the factors
above.

The second stage of the search entails estimating the
parameters of each candidate based on the sequence of most
likely hidden states (Melatos et al. 2020), which gives the
evolution of f , from which the approximate epoch and glitch
size can be read off. The follow-up analyses are performed
first within an f range which is wider than the range used
in the initial analysis. For all seven veto survivors which are
ultimately identified as genuine glitch events (i.e. all but the
candidate in J1622−4950, see Section 4.3), the maximum
allowed frequency deviation is 2.5 × 10−5 Hz rather than
3 × 10−7 Hz, so that large glitches are characterised more
accurately. The extended f range degrades the sensitivity
of the HMM to small glitches, as ηf must increase to keep
the computation tractable, which is why a smaller f range is
tested in the first stage. After the analysis with an extended
f range is complete, each dataset is divided into pre- and
post-glitch sections, and these sections are searched again
with the smaller f range and ηf used in the initial search.
No additional glitch candidates are detected in this way.

The parameter estimation results are summarised in Ta-
ble 4. Two outputs are of particular interest: the sequences
of most likely frequency states4 f̂(tn), and the posterior dis-
tribution γf (tn) of f(tn). The most likely frequency states
are obtained as the modes of the posterior distribution of
states qi at each timestep tn, where the posterior is denoted
γqi(tn) [defined in equation A13 of Melatos et al. (2020)].
The posterior frequency distribution γf (tn) is obtained by
marginalising γqi(tn) over ḟ . Plots of f̂(tn) and ln γf (tn) for
the follow-up analyses are shown in Figs. C1–C8.

We can obtain the posterior frequency derivative dis-
tribution in much the same way. We do not present these
distributions here, as coarse discretisation of ḟ in the DOI
often leads to unconstraining ḟ posteriors. An example is
shown in Fig. C9, showing γḟ (tn) from the follow-up analy-
sis of J1731−4744 described in Section 4. The posterior has
support over a significant fraction of the DOI, particularly
after the glitch at the 103rd ToA gap, which makes it diffi-
cult to draw meaningful conclusions about the evolution of
ḟ across the glitch.

4 The point-wise estimate f̂(tn) is the most likely value of f

at tn given the data O1:NT
. This is subtly different from the

f component of the nth element of the most likely sequence of

hidden states.
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Table 3. Properties of the initial glitch candidates detected in the first UTMOST data release.

Object Epoch lnK1(k) Vetoed?

MJD Y/N

J0742−2822 57527± 2 4.05 Y

J0835−4510 58218± 4 4.7× 104 N
J1105−6107 57417± 4 1.27 Y

J1257−1027 58651± 10 5.4 N

J1359−6038 58189± 2 11.7 Y
J1452−6036 58638± 1 126 N

J1622−4950 58076± 8 8.46 N

J1703−4851 58543± 21 47.5 N
J1709−4429 58222± 6 1.17× 103 N

J1731−4744 58007± 2 1.20× 105 N

J1740−3015 58393± 5 4.47× 104 N

Table 4. Properties of the detected glitches confirmed by follow-up analyses. The fractional glitch sizes recovered in the HMM analysis

are denoted by ∆f/f , while the values reported by Lower et al. (2020) are denoted by (∆f/f)lit.. Phase ambiguity due to periodic
observational scheduling prevents inferring ∆f/f for PSR J1452−6036 (see Section 4.2).

Object Epoch ∆f/f log Bayes factor (∆f/f)lit.
MJD ×10−9 ×10−9

J0835-4510 57732± 4 1436± 3 7.43× 104 1448+0.9
−0.8

58521± 7 2467± 13 3.36× 103 2501.2+2.6
−3.2

J1257−1027 58650± 16 2.2± 0.4 16.4 3.20+0.16
−0.57

J1452−6036 58606± 3 – 1.40× 103 270.7+0.3
−0.4

J1703−4851 58543± 21 10± 2 47.5 19.0+1.0
−0.7

J1709−4429 58200± 27 2405± 3 220 54.6± 1.0

J1731−4744 58007± 2 3150± 14 1.40× 105 3149+0.5
−0.4

J1740−3015 57476± 17 225± 14 1.43× 103 237.7+13.2
−9.3

58240± 11 829± 14 9.37× 103 842.3+7.1
−5.6

We remind the reader that the phase model of the HMM
is not the same as the phase model of tempo2. The HMM
allows inter-glitch wandering of f and ḟ , and transitions be-
tween the hidden f -ḟ states occur only at the start of ToA
gaps. In addition, the HMM includes no explicit modelling
of quasi-exponential post-glitch recovery processes. For all of
these reasons, we expect modest discrepancies between the
glitch parameters estimated using the HMM and those re-
ported by previous authors, who use tempo2 and tempon-
est to measure the glitch parameters. Those glitches which
merit additional discussion are covered in the remainder of
this section.

4.1 PSR J0835-4510

PSR J0835-4510 (Vela) exhibits frequent large glitches, at a
rate of roughly one every three years with ∆f/f ∼ 10−6 typ-
ically (Howitt et al. 2018). The UTMOST data available for
this pulsar consist of 1420 ToAs recorded between January 9
2014 and September 17 2018. To keep the analysis computa-
tionally tractable, we divide the dataset into three sections of
approximately 500 ToAs each, with the sections overlapping
by 50 ToAs to ensure that any glitches that occur during
the gaps between sections were not missed. Details of the
section boundaries can be found in Table 5. Plots of f̂(tn)
and ln γf (tn) for the three sections are shown in Fig. C1.

We detected two large glitches in the data, both of which
have been reported previously (Palfreyman 2016; Sarkissian

Table 5. Data segmentation in the PSR J0835−4510 analysis.

Section Start MJD End MJD

1 56666 56898
2 56868 57606

3 57552 58692

et al. 2019). The first, detected between MJD 57728 and
MJD 57734, has ∆f/f = (1436 ± 3) × 10−9. The sec-
ond, detected between MJD 58514 and MJD 58529, has
∆f/f = (2467± 13)× 10−9. We note a feature which recurs
several times throughout these analyses: γf (tn) shows multi-
ple peaks for the timesteps following the second glitch, indi-
cating the existence of multiple glitch models which describe
the data well, despite being widely separated in frequency.
One can see this clearly in the bottom right panel for Fig. C1,
where the yellow contour splits into three branches for ToA
index ≥ 533. Dunn et al. (2021) showed that this effect is
due to periodicity in the observation schedule. If the separa-
tions between consecutive ToAs are nearly integer multiples
of a common period T , there can be a degeneracy between
glitch models with ∆f differing by 1/T . Since mid-2017 the
Molonglo Observatory Synthesis Telescope has operated as
a transit instrument (Venkatraman Krishnan et al. 2020),
so each pulsar is observed at roughly the same local sidereal
time for every observation. Hence, to a good approximation,
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ToAs recorded by UTMOST after mid-2017 per pulsar are
separated by integer numbers of sidereal days. Indeed, the
spacing between the peaks in γf (tn) in Fig. C1 is close to
1/(1 sidereal day) = 1.1606× 10−5 Hz.

The degeneracy between glitch models may be alle-
viated by additional observations which disrupt the peri-
odic scheduling. Fortunately, PSR J0835−4510 is an ex-
tremely well-studied pulsar, and the second glitch in the
UTMOST dataset has been independently reported by sev-
eral other facilities (Sarkissian et al. 2019; Kerr 2019; Gan-
cio et al. 2020). Kerr (2019) estimated the size of the glitch
to be ∆f/f = (2491.1 ± 0.5) × 10−9 based on data from
the Fermi Large Area Telescope (Atwood et al. 2009), and
Gancio et al. (2020) estimated the size of the glitch to be
∆f/f = 2682×10−9 based on observations taken at the Ar-
gentine Institute of Radio Astronomy. These measurements
are consistent with the HMM estimate, and with the esti-
mate given by Lower et al. (2020).

4.2 PSR J1452−6036

We detected one glitch in this pulsar, occuring between MJD
58603.6 and MJD 58604.6. The log Bayes factor over the no-
glitch model is 1.4× 103.

Plots of f̂(tn) and ln γf (tn) are shown in Fig. C3.
Inspection of γf (tn) indicates that caution is warranted
when determining ∆f for this glitch. The inferred f̂(tn)
shown in the left panel of Fig. C3 suggests a glitch size of
∆f/f = 3869 × 10−9. However, as with PSR J0835−4510,
the three peaks in γf (tn) indicate the existence of multiple
glitch models which are widely separated in ∆f (the sep-
aration between peaks is approximately 1.1605 × 10−5 Hz)
but nevertheless describe the available data well. This glitch
was previously reported by Lower et al. (2020) as occur-
ring at MJD 58600.29(5) with ∆f/f = 270.7+0.3

−0.4. Using
the data in the UTMOST public data release, Dunn et al.
(2021) demonstrated that the available data are consistent
with ∆f/f = 270 × 10−9 + N/(fT ) with N = 0, 1, 2 and
T ≈ 1 sidereal day, thereby including the Lower et al. (2020)
value as one possible option (with N = 0). This result is in
good agreement with the HMM analysis: the three peaks in
the post-glitch frequency posterior generated by the HMM
lie at ∆f/f = 269×10−9, 2070×10−9, and 3869×10−9. For-
tunately, independent observations at the Parkes radio tele-
scope constrain the size of the glitch well, with Jankowski
et al. (2021) measuring ∆f/f = 270.52(3)×10−9. This value
is consistent with the Lower et al. (2020) estimate and the
smallest peak in γf (tn). Note that we do not expect the
tallest peak in the post-glitch frequency posterior to always
correspond to the true glitch size when confounded by peri-
odic scheduling (Dunn et al. 2021).

4.3 PSR J1622−4950

PSR J1622−4950 is a special object: it is a magnetar which
shows large torque variations, with much larger variations
in ḟ than the DOI ḟLS ± 1 × 10−14 Hz s−1 allowed in the
initial search for glitches (Camilo et al. 2018). While this
glitch candidate is not vetoed by removing ToAs either side
of the glitch, it is probably an artifact caused by the first-
pass DOI being too restrictive. We note that the sequences

of most likely f and ḟ states using the initial search parame-
ters run up against the edges of the DOI. We re-analyse the
dataset using a DOI which is somewhat expanded in both f
and ḟ , with boundaries in f at fLS±5×10−6 Hz and bound-
aries in ḟ at ḟLS± 1× 10−12 Hz s−1, searching for any glitch
candidates in exactly the same way as before. No glitch can-
didate is detected in this reanalysis, so we do not consider
this candidate further. For completeness, Figure C4 shows
the sequence of most likely frequencies and the posterior
frequency probability for the re-analysis with the extended
DOI. The posterior has a relatively complex structure, be-
cause both the timing noise included in the HMM and the
errors on individual TOAs are large, giving the HMM signif-
icant freedom in finding viable sequences of hidden states.
The large torque variations in PSR J1622−4950 make it dif-
ficult (though not impossible) to obtain a phase-connected
timing solution covering timespans longer than a few months
(Levin et al. 2010). We note briefly that the HMM offers a
straightforward method of obtaining the pulse numbering
and hence a phase-connected solution: from the sequence of

most likely frequencies f̂(tn) and frequency derivatives
ˆ̇
f(tn)

it is easy to calculate the number of pulses during each gap
via equation (1). From this information the relative pulse
numbering is easily derived, and a phase-connected solution
obtained.

4.4 PSR J1709−4429

We measured a glitch in this pulsar during the ToA gap
between MJD 58172.9 and MJD 58227.7, with size ∆f/f =
(2405 ± 3) × 10−9. The log Bayes factor over the no-glitch
model is 220.

Plots of f̂(tn) and ln γf (tn) are shown in Fig. C6. This
detection corresponds to a glitch which was previously re-
ported as occuring at MJD 58178 ± 6 with a glitch size of
∆f/f = 54.6 ± 1.0 × 10−9 (Lower et al. 2018, 2020). The
glitch reported previously is smaller than the one we recover
in this analysis. As with the glitches in PSR J0835−4510 and
PSR J1452−6036, the post-glitch frequency posterior is mul-
tiply peaked, with peaks separated by ∼ 1/(1 sidereal day)
due to periodic observation scheduling. Dunn et al. (2021)
found that a combined dataset incorporating both the UT-
MOST data release and observations taken at the Parkes
Observatory is consistent with ∆f/f = (2432± 0.1)× 10−9.
Hence we expect that the glitch size recovered by the HMM
reflects the true glitch properties.

4.5 PSR J1740−3015

In the follow-up analysis of PSR J1740−3015 we detected
two glitches. One glitch occurs in the ToA gap between MJD
57459 and MJD 57486, with size ∆f/f = (225±14)×10−9,
and is detected with a log Bayes factor of 1.43 × 103. The
second glitch occurs in the ToA gap between MJD 58229
and MJD 58243, with size ∆f/f = (829±14)×10−9, and is
detected with a log Bayes factor of 9.37×103. Plots of f̂(tn)
and ln γf (tn) are shown in Fig. C8.

The first glitch was initially reported by Jankowski et al.
(2016) based on UTMOST data. They reported ∆f/f =
(227.29± 0.03)× 10−9, consistent with the HMM estimate.
Multiple peaks are visible in γf (tn) after the second glitch.
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However, this second glitch was also reported by Basu et al.
(2020) based on data taken at the upgraded Giant Metre-
wave Telescope; they reported ∆f/f = 837.4(2)×10−9, con-
sistent with the HMM analysis. No post-glitch recovery term
was included in their fit.

Two additional glitches have been reported in this pul-
sar during the timespan covered by the UTMOST first
public release, occurring at MJD 57296.5 ± 0.9 and MJD
57346.0 ± 0.6 with sizes ∆f/f = 1.30 ± 0.04 × 10−9 and
∆f/f = 1.94 ± 0.02 × 10−9 respectively (Jankowski et al.
2015, 2016). We do not detect these glitches in our analy-
sis. This is not surprising, as the 90% upper limit listed in
Table 6, namely ∆f90%/f = 41 × 10−9 (see Section 5), is
an order of magnitude larger than the reported sizes of the
undetected glitches.

5 SIZE UPPER LIMITS

Having detected nine glitches among seven pulsars out of the
283 pulsars searched, we now turn to the question of com-
pleteness of this glitch sample. In Section 5.1 we discuss the
90% frequentist upper limits set on 282 UTMOST pulsars,
which are the main result of this section5. In Section 5.2
we compare these upper limits to the observed population
of glitches, and discuss the completeness of the sample of
glitches reported in this work. Finally in Section 5.3 we in-
vestigate how much quasi-exponential glitch recovery affects
the upper limits of Section 5.1.

5.1 Frequentist limits

In order to assess completeness, we set 90% frequentist up-
per limits ∆f90% on the sizes of undetected glitches for each
pulsar in the UTMOST data release. The upper limit is de-
fined, such that there is a 90% probability of detecting a
glitch of size ∆f90% in the correct ToA gap, if the glitch
occurs at a random epoch distributed uniformly over the
entire dataset (excluding the first two and last two ToAs).
In Sections 5.1 and 5.2, for the sake of simplicity, we do not
include a jump in ḟ at the glitch epoch or an exponential
post-glitch recovery; the latter effect is considered in Sec-
tion 5.3. The probability of detection for a given pulsar and
a given ∆f is estimated with 100 synthetic datasets gener-
ated using libstempo with a randomly chosen glitch epoch
and noise injected at the level reported in the UTMOST
data release. The injected noise includes both Gaussian ToA
measurement error and timing noise, e.g. spin wandering in-
trinsic to the pulsar (Goncharov et al. 2021). The proce-
dures for generating the synthetic datasets and estimating
∆f90% are described in Appendix B. The prescription for
choosing HMM parameters is identical to the prescription
for real data, as laid out in Section 3. A systematic upper
limit injection study of this kind is practical only because
the HMM runs fast and automatically without human inter-
vention (Melatos et al. 2020).

Figure 1 shows a histogram of ∆f90%/f for the 282
pulsars analysed here. The majority (96%) of the ∆f90%/f

5 We are unable to set a 90% upper limit for the magnetar PSR

J1622−4950, as discussed in Section 5.1.
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Figure 1. Histogram of 90% frequentist upper limits on fractional

glitch size for the 282 UTMOST pulsars analysed in this paper.

Object ∆f90%/f
×10−9

J0835−4510 6.7
J1257−1027 1.2

J1452−6036 14

J1703−4851 12
J1709−4429 12

J1731−4744 62

J1740−3015 41

Table 6. 90% frequentist upper limits on the undetected glitch
size in the seven UTMOST pulsars for which at least one glitch

is detected by the HMM.

values lie between 10−9 and 10−7. The mean fractional up-
per limit for our sample is 〈∆f90%/f〉 = 1.9 × 10−8. The
minimum ∆f90%/f value is 4.5 × 10−11 for the millisecond
pulsar PSR J1730−2304, while the maximum is 2.7 × 10−7

in the young pulsar PSR J1123−6259. We do not list every
value of ∆f90%/f here for readability, but Table 6 lists the
values for the seven pulsars in which we report at least one
glitch in Section 4. A complete list of ∆f90% values can be
found in the Supplementary Materials.

No upper limit is obtained for PSR J1622−4950, where
strong timing noise in the HMM (see Section 4.3) and a
periodic observation schedule mean that it is not possible
to attain a detection probability of 90% for any plausible
glitch size. Typically, even in the presence of significant tim-
ing noise one can increase ∆f to a point where timing noise
can no longer account for the frequency jump. However, if
observations are periodic as they are here, with a period
of 1 sidereal day, then glitches with sizes ∆f larger than
N/(1 sidereal day) (where N is an integer) are recovered
as glitches with size ∆f − N/(1 sidereal day). Hence they
may never be detected by the HMM if the timing noise
is large enough to account for a change in frequency of
∆f −N/(1 sidereal day).

For the data analysed here, the sensitivity of the HMM
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is principally controlled by the largest observing gaps in the
data. Large gaps allow for significant deviations in the spin
frequency to be absorbed into the timing noise model in
the HMM, with the expected fractional upper limit propor-
tional to ḟ+ maxn xn. When this effect dominates, a regular
and frequent observing cadence is most useful in obtain-
ing more stringent upper limits. However, we caution that
this is not true in all regimes. When the observing cadence
is short enough, or the allowed wandering due to timing
noise is small enough, the sensitivity of the HMM is instead
controlled by the phase uncertainty incorporated into the
HMM via the κ parameter (see Section 3.1). In this case
the expected fractional upper limit is roughly proportional
to 2πκ−1/2〈xn〉−1, and increasing the cadence (decreasing
〈xn〉) further will give lower sensitivity, if κ is dominated
by the contribution from σToA, which is independent of xn.
We refer the reader to section 6 and appendix G of Melatos
et al. (2020) for further discussion on the sensitivity of the
HMM glitch detector.

5.2 Population-level comparison

We compare the upper limits obtained in Section 5.1 to the
observed size distribution aggregated across the entire pul-
sar population, as recorded in the Jodrell Bank Observa-
tory (JBO) glitch catalogue6 (Espinoza et al. 2011). This
is not exactly a like-for-like comparison: the catalogue of
observed glitches combines a wide variety of datasets and
analyses, with varying observation scheduling and glitch de-
tection strategies. Nevertheless it is instructive to ask what
categories (if any) of glitches observed in other pulsars are
not detectable by the HMM in the UTMOST data release.

Fig. 2 shows a histogram of all ∆f/f values listed in the
JBO glitch catalogue overlaid with a histogram of the upper
limits obtained in this analysis. There is a population of de-
tected glitches in the JBO catalogue with 10−12 . ∆f/f .
10−9 which are smaller than the 90% upper limits obtained
for most of the pulsars in our sample. Glitches in this size
range are unlikely to be detected by the search in this pa-
per. Of course, this raises the interesting question of whether
some glitches in the JBO catalogue with ∆f/f . 10−9 are
false alarms. This comes down to distinguishing timing noise
from glitches through Bayesian model selection and calcu-
lating ∆f90% for the relevant observational studies in the
literature, a task which is challenging without an unsuper-
vised algorithm like the HMM (Janssen & Stappers 2006;
Chukwude & Urama 2010; Espinoza et al. 2014; Yu & Liu
2017).

By way of comparison, we briefly highlight three other
investigations of glitch detectability which are similar in
spirit to the current work. Janssen & Stappers (2006) per-
formed Monte Carlo injections for a single pulsar, PSR
J0358+5413, finding that glitches as small as ∆f/f = 10−11

can be detected by eye. It is unclear, however, how confi-
dently such glitches can be detected. Espinoza et al. (2014)
employed an automated glitch detection algorithm to search
for glitches in the Crab pulsar, and reported a minimum
glitch size in that case, which is intrinsic to the pulsar and
not an artifact of the detector performance. This technique

6 http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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Figure 2. Histogram of size upper limits ∆f90%/f computed in

Section 5.1 (orange) compared with sizes ∆f/f detected in the

entire pulsar population in the Jodrell Bank Observatory cata-
logue (blue).

has also been applied to the Vela pulsar, and a lack of small
glitches was reported in that case also (Espinoza et al. 2021).
However, the detector returns a large number of (anti-)glitch
candidates which must be classified after the fact as timing
noise or glitches. This obstructs the characterisation of the
detector in a controlled environment via a suite of synthetic
data tests, as well as the application of this technique to
a large number of datasets. Yu & Liu (2017) assessed the
completeness of the glitch catalogue reported in Yu et al.
(2013) through Monte Carlo simulations in which glitch de-
tection was performed using temponest. They concluded
that the reported glitch catalogue contains all glitches de-
tectable by manual inspection of timing residuals. However
the criterion for a positive detection relies on knowing the
true glitch epoch; it cannot be extended to finding previ-
ously unknown glitches. We emphasise that although some
glitches may be missed, the upper limits calculated here are
derived from simulated searches of every pulsar individually.

5.3 Post-glitch recovery

Many (but not all) glitches exhibit a degree of recovery over
timescales of days to months, such that part (or all) of ∆f
reverses, leaving a permanent frequency jump ∆fp (Shemar
& Lyne 1996). The recovery is typically modelled as one or
more exponential terms in the post-glitch frequency evolu-
tion, viz.

f(t) = f(0) + ∆fp +

M∑
i=1

∆fie
−t/τi (11)

for a hypothetical glitch occurring at t = 0, where the ∆fi
are the sizes of the M exponentially recovering components,
with recovery timescales τi. In many events one has M = 1,
but where the pulsar is well-observed following the glitch,
more exponential terms may be incorporated, e.g. M ≤ 4
(Dodson et al. 2002). The glitch population as a whole ex-
hibits a wide variety of recovery behaviour. Values of the
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Figure 3. Histogram for 282 UTMOST pulsars of the ratio of 90%

glitch size upper limit computed with a completely recovering

glitch (∆f90%Q=1) to the 90% upper limit computed with no recovery

(∆f90%Q=0).

healing parameter

Q =

∑
i ∆fi

∆fp +
∑
i ∆fi

(12)

are typically between 0 and 1, with Q� 1 being more com-
mon for large glitches (∆fp/f & 10−6) (Yu et al. 2013).

In Section 5.1 we set 90% frequentist upper limits on the
sizes of undetected glitches assuming a glitch model (both
in the simulated data and the HMM) with no recovery (i.e.
Q = 0). We now investigate whether including recovery in
the simulated data significantly changes these upper limits.
To this end, we recompute 90% frequentist upper limits as
in Section 5.1, but now assume that the glitch recovers com-
pletely (i.e. Q = 1 in the simulated data) on a timescale of
τ1 = 100 d, typical of many pulsars (Yu et al. 2013). Note
that we do not modify the phase model of the HMM in any
way — no attempt is made to model the exponential re-
covery as part of the glitch detection step. Fig. 3 shows a
histogram of the ratios between the Q = 1 and Q = 0 values
of ∆f90% for each pulsar. In the majority of cases the effect
of recovery is not severe: for 87% of the pulsars one obtains
∆f90%

Q=1 < 5∆f90%
Q=0. Hence we do not expect complete glitch

recovery on month-long timescales to affect significantly the
results presented in Section 5.1. The outliers with large ra-
tios ∆f90%

Q=1/∆f
90%
Q=0 typically have small intrinsic ḟLS, with

ḟLS > −10−15 Hz s−1. In this regime the extra ḟ due to
quasi-exponential recovery is much larger than the range of
ḟ in the DOI, which covers only ±0.1ḟLS (see Section 3.3).
Hence the HMM struggles to track the evolution of f and ḟ ,
and is correspondingly less sensitive. Conversely, for six pul-
sars we have 0.8 < ∆f90%

Q=1/∆f
90%
Q=0 < 1. In all but one case

these pulsars are monitored with relatively high cadence,
and have sufficiently wide ranges in the ḟ DOI to allow the
tracking of the extra ḟ from the exponential recovery7 Hence

7 In the remaining case, which is PSR J1736−2457, we expect

we expect that the change in ḟ from the recovery allows the
HMM to detect glitches more readily in this regime.

The above analysis only considers one point in the space
of possible (Q, τ1) choices (though it is a fairly typical point).
A full exploration of the Q-τ1 plane for every pulsar in the
UTMOST data release is beyond the scope of this paper.
We emphasise that the conclusions drawn about upper lim-
its here and in Section 5.1 are conditional not only on the
analysis method but also on the assumed glitch model, a
feature of any timing analysis.

6 CONCLUSION

In this paper we present a search for glitches using a HMM in
283 pulsar timing datasets released by the UTMOST pulsar
timing programme, covering observations taken between Oc-
tober 2015 and August 2019. We detect nine glitches among
seven pulsars, all of which have been previously reported.
The inferred ∆f is usually consistent with previous discov-
eries, except when there is ambiguity due to near-periodic
scheduling (Dunn et al. 2021). In this case the discrepancy
in ∆f can be large, viz. an integer multiple of T−1, where
T is the observation scheduling period. For all the glitches
detected in this work, complementary observations by other
observatories allow the unambiguous determination of ∆f .
In principle the ∆f inferred from an HMM analysis may
be biased by quasi-exponential post-glitch recovery, which
is not included in the HMM in its current implementation.
However, this effect is demonstrated to be small for the
glitches measured in this work, typically . 2% for the 7 ob-
jects studied here. Incorporating post-glitch recoveries into
the HMM (at the expense of introducing new parameters)
is a priority for future work.

For each object, we perform injection studies to set fre-
quentist upper limits on the size of undetected glitches. The
mean 90% upper limit on the fractional size of undetected
glitches is 〈∆f90%/f〉 = 1.9 × 10−8. The smallest value of
∆f90%/f is 4.1×10−11, calculated for the millisecond pulsar
PSR J1730-2304. The largest value of ∆f90%/f is 2.7×10−7,
calculated for the young pulsar PSR J1123−6259. Obtaining
more stringent upper limits using the existing data would re-
quire a more complete characterisation of the timing noise
and a comprehensive understanding of how different timing
noise models ought to be included in the HMM, a challenge
which is faced by other glitch detection schemes (Chukwude
& Urama 2010; Espinoza et al. 2014; Singha et al. 2021).
Independent of these timing noise considerations, future ob-
serving campaigns can provide stricter upper limits with
higher cadence and/or more sensitive observations. We show
that glitch recovery has a mild effect on the upper limits; the
upper limits for 87% of the objects increase by no more than
a factor of 5, if it is assumed that the undetected glitch re-
covers completely on a fiducial time-scale of 100 d.

Understanding the completeness of glitch catalogues is

that simple statistical fluctuation is the cause: the observing ca-
dence is relatively low, with several gaps of 10–60 days present in
the data. In this case, when relaxations are included and the effect

of a glitch on f and ḟ can decay away within one or two post-
glitch ToAs, the estimated value of ∆f90% may depend somewhat
on the epochs of the injected glitches in the synthetic datasets.

MNRAS 000, 1–14 (2020)
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Table 7. Top and bottom five −ḟ〈∆t〉 values among pulsars ob-
served by UTMOST. The Pearson correlation coefficients between

∆f/f and the forward (r+) and backward (r−) waiting times are

also listed.. The objects in the top (bottom) half of the table are
more likely to exhibit cross-correlations between glitch size and

forward (backward) waiting time.

Object Ng −ḟ〈∆t〉 (Hz) r+ r−

J1709−4429 5 1.8× 10−3 0.66 −0.47
J1803−2137 6 1.4× 10−3 0.91 −0.24

J0835−4510 20 1.2× 10−3 0.24 0.55

J1048−5832 6 6.0× 10−4 0.58 −0.48
J1105−6107 5 4.2× 10−4 0.87 −0.37

J1731−4744 5 4.4× 10−5 −0.71 0.99
J1740−3015 36 3.5× 10−5 0.29 −0.02

J1705−1906 4 1.2× 10−5 0.97 −0.54

J1825−0935 7 1.1× 10−5 0.91 −0.30
J1902+0615 6 2.0× 10−6 0.49 −0.31

essential to falsifying models of glitching behaviour. For
instance, Melatos et al. (2018) predicted (under certain
weak, astrophysics-independent assumptions) that pulsars
with large values of −ḟ〈∆t〉 (where 〈∆t〉 is the mean wait-
ing time between glitches) should show significant correla-
tions between the size of a glitch and the forward waiting
time to the next glitch. Similarly, pulsars with small val-
ues of −ḟ〈∆t〉 are predicted to be the most likely to exhibit
correlations between glitch size and backward waiting time,
although the latter correlations are predicted to be weaker.
As a foretaste of what is possible, Table 7 shows the five
highest and five lowest values of −ḟ〈∆t〉 amongst the pul-
sars which have been observed in the first UTMOST data
release, as well as the Pearson corrrelation coefficients be-
tween ∆f/f and the forward and backward waiting times.
While most of these pulsars do not yet have enough glitches
observed for any statistically significant conclusions to be
drawn, there is tentative evidence for strong forward cor-
relations in the pulsars with the largest values of −ḟ〈∆t〉.
Continued high-cadence monitoring of these pulsars and a
good understanding of the likelihood that a glitch of a given
size might not have been detected are essential to falsify-
ing the proposed relations. Improved understanding of the
completeness of glitch catalogues is also important to stud-
ies of the physical conditions involved. Several authors have
investigated the nature of the neutron superfluid in the in-
ner crust by studying glitching behaviour (e.g. Andersson
et al. 2012; Ho et al. 2015; Montoli et al. 2020, 2021). The
quantity of interest is frequently the cumulative fractional
change in spin frequency due to glitches, A ∝

∑
i ∆fi/f .

An understanding of the completeness of the glitch sample
is essential to understanding the uncertainty on A, and by
extension understanding the implications of measured values
of A on the underlying physics.
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APPENDIX A: FOLLOW-UP ANALYSIS OF VETOED
CANDIDATES

In Section 4 we describe the vetoing of three candidates.
Given that these vetos proceed by removing the ToAs brack-
eting each of the candidates, there is a chance that genuine
glitch events may be discarded by this procedure, if the glitch
is close to the limit of detectability. In this appendix we in-
vestigate each of the vetoed candidates in more detail, with
the aim of clarifying their origin.

A1 PSR J0742−2822

The case of PSR J0742−2822 turns out to be straight-
forward. The dispersion measure (DM) in the ephemeris
file provided in the UTMOST data release was mistak-
enly quoted as 681 pc cm−3, whereas the correct value is
74 pc cm−3. A large error in the DM can produce signifi-
cant scatter in the timing residuals, as even small variations
in the central frequency of each observation lead to large
corrections to the ToAs. After correcting the DM in the
ephemeris, we find that the scatter in the residuals in the
vicinity of the candidate is reduced by a factor of 20. Finally,
we re-run the HM analysis with the updated DM value and
find no candidate. Hence we reject the initial candidate as
non-astrophysical.

A2 PSR J1105−6107

Inspection of the timing residuals surrounding the candidate
in PSR J1105−6107 reveals no obvious features, and inspec-
tion of the raw archives similarly reveals no disturbance in
the vicinity of the candidate. As a consistency check, we
re-generate the ToAs for PSR J1105−6107 using psrchive
(Hotan et al. 2004) and re-run the HMM analysis. No can-
didate is returned, and we thus reject the candidate as non-
astrophysical.

We are unable to identify a clear reason for the dis-
crepancy between the ToAs in the data release and the re-
generated set. As we are aware, both the archives contain-
ing the folded observations and the standard profile used to
generate the times of arrival have not changed between the
UTMOST data release and the re-generation described here.
However, records of the UTMOST data release preparation
are not sufficiently detailed to allow us to check this, and it
is possible that the profile used to generate the ToAs in the
UTMOST data release was not optimal (e.g. not sufficiently
smoothed).

A3 PSR J1359−6038

Inspection of the timing residuals surrounding the candi-
date in PSR J1359−6038 reveals that a single ToA at MJD
58190.7 is displaced away from the rest of the surrounding
ToAs by approximately 0.4 ms. This is significant compared
to the uncertainty on this ToA of 60µs. To check whether
this displaced ToA is due to conditions at the observatory,
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we inspect the timing residuals of other pulsars that were
observed no more than twelve hours before or after the ToA
in question. We identify multiple pulsars in which the obser-
vation nearest MJD 58190.7 is displaced by approximately
the same amount in the same direction, for example PSRs
J1146−6030, J1600−30538, and J1644−4559. Thus we con-
clude that the candidate in PSR J1359−6038 is due to local
conditions at the observatory and has no astrophysical ori-
gin.

APPENDIX B: SYNTHETIC DATASET GENERATION
AND UPPER LIMIT ESTIMATION

In order to set frequentist upper limits we perform injection
studies for each pulsar. We first outline the procedure for
generating a single synthetic dataset for one object, which
is based on a given UTMOST dataset (i.e. with identical
ephemeris, observing cadence, and ToA uncertainties), with
a glitch of size ∆f injected.

(i) A glitch epoch tg is chosen at random, uniformly dis-
tributed between the second and second-last ToAs. Glitches
which occur in either the first or last ToA gap are indis-
tinguishable from a single outlier ToA due to some external
factor, so we do not consider them when setting upper limits
here.

(ii) A new phase model is generated by libstempo which
matches the UTMOST phase model, except that a glitch
term ∆φg(t) = Θ(t − tg)∆f(t − tg) is added [where Θ(t) is
the Heaviside step function].

(iii) Using the ToAs of the original dataset as a starting
point, a new set of ToAs is generated by shifting the original
ToAs slightly so that they show zero residuals with respect
to the new phase model.

(iv) Noise is introduced into the new set of ToAs at the
levels reported in the UTMOST data release. We use the
add_efac, add_equad, and add_rednoise functions in lib-
stempo, using the EFAC, EQUAD, and red noise parame-
ters reported for each pulsar in the UTMOST data release.

(v) The new phase model and new set of ToAs are saved
as a synthetic dataset.

This procedure ensures that the synthetic datasets closely
match the true datasets in various important aspects, e.g.
basic timing model parameters, observing cadence, and noise
characteristics.

The procedure for estimating the probablity of detec-
tion for a glitch size ∆f [denoted Pd(∆f)] in a single pulsar
is straightforward:

(i) Generate 100 synthetic datasets with a glitch of size
∆f injected, according to the procedure in the paragraph
above.

(ii) Analyse each dataset with the HMM following the
method outlined in Section 3.

(iii) For each dataset, determine the Bayes factor K be-
tween the model M1(kinj) with a glitch included in the ToA
gap indexed by kinj corresponding to the injected glitch
epoch and the model M0 with no glitch included.

8 In the case of PSR J1600−3053 the displaced ToA was removed

manually during the preparation of the public data release.

(iv) The proportion of synthetic datasets with K > Kth

gives an estimate of Pd(∆f).

Finally we give a simple prescription for estimating the
value of ∆f90% from Pd(∆f90%) = 0.9, i.e. the 90% upper
limit on the size of undetected glitches in each pulsar.

(i) Choose the starting range of glitch sizes to be
[∆f−,∆f+] = [10−9, 10−6] Hz.

(ii) Choose a glitch size ∆f by bisecting the range loga-
rithmically, i.e.,

log10(∆f) = log10(∆f−) + [log10(∆f+)− log10(∆f−)]/2

(B1)

where all the frequencies are understood to be in units of
Hz.

(iii) Calculate Pd(∆f) as outlined previously.
(iv) If |Pd(∆f)− 0.9| ≤ 0.01, terminate and take ∆f as

the 90% frequentist upper limit ∆f90%.
(v) Otherwise, revise the glitch size range as follows:

(a) If Pd(∆f) > 0.9, set ∆f+ = ∆f .
(b) If Pd(∆f) < 0.9, set ∆f− = ∆f .

(vi) Return to step (ii).

This is essentially a binary search over possible upper limits.

APPENDIX C: POSTERIOR DISTRIBUTIONS AND
FREQUENCY TRACKS FOR HMM ANALYSES

This appendix collects Figs. C1–C8 showing the sequence
of most likely frequencies f̂(tn) and heatmaps of the fre-
quency posterior distributions γf (tn) for the eight pulsars
which are followed up with glitch parameter estimation anal-
yses as described in Section 4. The structure of each figure
is essentially the same: the left panel shows f̂(tn) as a func-
tion of the MJD, and the right panel shows ln[γf (tn)] as
a function of ToA gap index. The values of ln[γf (tn)] have
been clipped below to aid readability. The vertical axis in
both cases extends over the full f range in the DOI for each
analysis. In some cases γf (tn) displays multiple peaks; see
Section 4.1 and Dunn et al. (2021) for further discussion of
this phenomenon. Both f̂(tn) and γf (tn) are obtained using
the forward-backward algorithm (Rabiner 1989). We also
remind the reader that f̂(tn) is the sequence of most likely
states at each timestep (i.e. it is constructed from the se-
quence of modes of the posterior distribution of states) – it
is not the most likely sequence of states, which may instead
be calculated using the Viterbi algorithm (Rabiner 1989).
However, the difference between these two sequences is typ-
ically small (Melatos et al. 2020), and so we prefer to use
f̂(tn).

We also include in Fig. C9 an illustrative plot showing
the frequency derivative posterior distribution γḟ (tn) from
the follow-up analysis of PSR J1371−3744. As mentioned
in Section 4, we do not include equivalent plots for every
pulsar, as the coarse discretisation of ḟ in the DOI leads to
relatively uninformative ḟ posteriors. In the exemplar plot,
γḟ (tn) shows support over a significant fraction of the DOI,
particularly after the glitch occurs at the 103rd ToA, making
it difficult to make useful inferences about the evolution of
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Figure C1. Sequence of most likely frequencies f̂(tn) (left) and heatmap of posterior frequency probability ln[γf (tn)] (right) for the HMM

follow-up analysis of PSR J0835−4510. Frequency is on the vertical axis in all panels, and the range of the vertical axis is the full range
of the DOI. Note that the horizontal axes for the two panels are not exactly the same: the left panels have MJD on the horizontal axis,

while the right panels have ToA gap index on the horizontal axis instead, for ease of plotting. The three rows correspond to sections 1,

2 and 3 from top to bottom as described in Table 5.

Figure C2. As in Figure C1, but for PSR J1257−1027.

ḟ over the dataset. Note that the heatmap shows γḟ , not its
natural logarithm, unlike Figs. C1–C8.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure C3. As in Figure C1, but for PSR J1452−6036.

Figure C4. As in Figure C1, but for PSR J1622−4950.

Figure C5. As in Figure C1, but for PSR J1703−4851.

Figure C6. As in Figure C1, but for PSR J1709−4429.

MNRAS 000, 1–14 (2020)
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Figure C7. As in Figure C1, but for PSR J1731−4744.

Figure C8. As in Figure C1, but for PSR J1740−3015.

Figure C9. Heatmap of posterior frequency derivative probabilty γḟ (tn) for the HMM follow-up analysis of J1731−4744.
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